• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjects

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    The elastic properties, generalized stacking fault energy and dissociated dislocations in MgB2 under different pressure

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Feng, Huifang
    Wu, Xiaozhi
    Gan, Liyong
    Wang, Rui
    Wei, Qunyi
    KAUST Department
    Physical Sciences and Engineering (PSE) Division
    Date
    2013-05-31
    Permanent link to this record
    http://hdl.handle.net/10754/562778
    
    Metadata
    Show full item record
    Abstract
    The 〈112̄0〉 perfect dislocation in MgB2 is suggested to dissociate into two partial dislocations in an energy favorable way 〈112̄0〉 → 1/2 〈112̄0〉 + SF + 1/2 〈112̄0〉. This dissociation style is a correction of the previous dissociation 〈1000〉 → 1/3 〈11̄00〉 SF + 1/3 〈 2100〉proposed by Zhu et al. to model the partial dislocations and stacking fault observed by transmission electron microscopy. The latter dissociation results in a maximal stacking fault energy rather than a minimal one according to the generalized stacking fault energy calculated from first-principles methods. Furthermore, the elastic constants and anisotropy of MgB2 under different pressure are investigated. The core structures and mobilities of the 〈112̄0〉 dissociated dislocations are studied within the modified Peierls-Nabarro (P-N) dislocation theory. The variational method is used to solve the modified P-N dislocation equation and the Peierls stress is also determined under different pressure. High pressure effects on elastic anisotropy, core structure and Peierls stress are also presented. © 2013 Springer Science+Business Media New York.
    Sponsors
    Project Supported by the Natural Science Foundation of China (11104361) and Project No. CQDXWL2012015 supported by the Fundamental Research Funds for the Central Universities.
    Publisher
    Springer Verlag
    Journal
    Journal of Superconductivity and Novel Magnetism
    ISSN
    15571939
    DOI
    10.1007/s10948-013-2226-0
    ae974a485f413a2113503eed53cd6c53
    10.1007/s10948-013-2226-0
    Scopus Count
    Collections
    Articles; Physical Sciences and Engineering (PSE) Division

    entitlement

     
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.