Solvent vapor annealing in the molecular regime drastically improves carrier transport in small-molecule thin-film transistors
Type
ArticleAuthors
Khan, Hadayat UllahLi, Ruipeng
Ren, Yi
Chen, Long
Payne, Marcia M.
Bhansali, Unnat Sampatraj
Smilgies, Detlef Matthias
Anthony, John Edward
Amassian, Aram

KAUST Department
Chemical Engineering ProgramCore Labs
KAUST Solar Center (KSC)
Material Science and Engineering Program
Organic Electronics and Photovoltaics Group
Physical Science and Engineering (PSE) Division
KAUST Grant Number
FIC/2010/04Date
2013-02-08Online Publication Date
2013-02-08Print Publication Date
2013-04-10Permanent link to this record
http://hdl.handle.net/10754/562719
Metadata
Show full item recordAbstract
We demonstrate a new way to investigate and control the solvent vapor annealing of solution-cast organic semiconductor thin films. Solvent vapor annealing of spin-cast films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn) is investigated in situ using quartz crystal microbalance with dissipation (QCM-D) capability, allowing us to monitor both solvent mass uptake and changes in the mechanical rigidity of the film. Using time-resolved grazing incidence wide angle X-ray scattering (GIWAXS) and complementary static atomic force microscopy (AFM), we demonstrate that solvent vapor annealing in the molecular regime can cause significant performance improvements in organic thin film transistors (OTFTs), whereas allowing the solvent to percolate and form a liquid phase results in catastrophic reorganization and dewetting of the film, making the process counterproductive. Using these lessons we devise processing conditions which prevent percolation of the adsorbed solvent vapor molecules for extended periods, thus extending the benefits of solvent vapor annealing and improving carrier mobility by nearly two orders of magnitude. Ultimately, it is demonstrated that QCM-D is a very powerful sensor of the state of the adsorbed solvent as well as the thin film, thus making it suitable for process development as well as in-line process monitoring both in laboratory and in future manufacturing settings. © 2013 American Chemical Society.Citation
Ullah Khan, H., Li, R., Ren, Y., Chen, L., Payne, M. M., Bhansali, U. S., … Amassian, A. (2013). Solvent Vapor Annealing in the Molecular Regime Drastically Improves Carrier Transport in Small-Molecule Thin-Film Transistors. ACS Applied Materials & Interfaces, 5(7), 2325–2330. doi:10.1021/am3025195Sponsors
Part of this work was supported by KAUST's Office of Competitive Research Funds under Award FIC/2010/04. The authors acknowledge use of the D1 beamline at the Cornell High Energy Synchrotron Source supported by the National Science Foundation (NSF DMR-0936384) and NIH-NIGMS.Publisher
American Chemical Society (ACS)PubMed ID
23394109ae974a485f413a2113503eed53cd6c53
10.1021/am3025195
Scopus Count
Related articles
- Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis.
- Authors: Yuan Q, Mannsfeld SC, Tang ML, Toney MF, Lüning J, Bao Z
- Issue date: 2008 Mar 19
- Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.
- Authors: You J, Zhang S, Huang G, Shi T, Li Y
- Issue date: 2013 Jun 28
- Structural evolution of perpendicular lamellae in diblock copolymer thin films during solvent vapor treatment investigated by grazing-incidence small-angle X-ray scattering.
- Authors: Zhang J, Posselt D, Sepe A, Shen X, Perlich J, Smilgies DM, Papadakis CM
- Issue date: 2013 Aug
- Directional Solvent Vapor Annealing for Crystal Alignment in Solution-Processed Organic Semiconductors.
- Authors: Bharti D, Raghuwanshi V, Varun I, Mahato AK, Tiwari SP
- Issue date: 2017 Aug 9
- Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.
- Authors: Basu S, Lee MC, Wang YH
- Issue date: 2014 Aug 21