On the power and offset allocation for rate adaptation of spatial multiplexing in optical wireless MIMO channels
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Communication Theory Lab
Date
2013-04Permanent link to this record
http://hdl.handle.net/10754/562711
Metadata
Show full item recordAbstract
In this paper, we consider resource allocation method in the visible light communication. It is challenging to achieve high data rate due to the limited bandwidth of the optical sources. In order to increase the spectral efficiency, we design a suitable multiple-input multiple-output (MIMO) system utilizing spatial multiplexing based on singular value decomposition and adaptive modulation. More specifically, after explaining why the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels, we theoretically derive a power allocation method for an arbitrary number of transmit and receive antennas for optical wireless MIMO systems. Based on three key constraints: the nonnegativity of the intensity-modulated signal, the aggregate optical power budget, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size. Based on some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency at the expense of an increased computational complexity in comparison to a simple method that allocates the optical power equally among all the data streams. © 2013 IEEE.Citation
Ki-Hong Park, Young-Chai Ko, & Alouini, M. (2013). On the Power and Offset Allocation for Rate Adaptation of Spatial Multiplexing in Optical Wireless MIMO Channels. IEEE Transactions on Communications, 61(4), 1535–1543. doi:10.1109/tcomm.2013.012913.110290Sponsors
This work was funded in part by King Abdullah University of Science and Technology (KAUST), and supported in part by the KCC (Korea Communications Commission), Korea, under the R&D program supervised by the KCA (Korea Communications Agency) (KCA-2012-08-911-04-002).ae974a485f413a2113503eed53cd6c53
10.1109/TCOMM.2013.012913.110290