Show simple item record

dc.contributor.authorWang, Hongtao*
dc.contributor.authorFeng, Qiong*
dc.contributor.authorCheng, Yingchun*
dc.contributor.authorYao, Yingbang*
dc.contributor.authorWang, Qingxiao*
dc.contributor.authorLi, Kun*
dc.contributor.authorSchwingenschlögl, Udo*
dc.contributor.authorZhang, Xixiang*
dc.contributor.authorYang, Wei*
dc.date.accessioned2015-08-03T11:01:11Zen
dc.date.available2015-08-03T11:01:11Zen
dc.date.issued2013-03-07en
dc.identifier.issn19327447en
dc.identifier.doi10.1021/jp311658men
dc.identifier.urihttp://hdl.handle.net/10754/562680en
dc.description.abstractTo understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.en
dc.description.sponsorshipH.T.W. acknowledges financial support from the National Science Foundation of China (Grant No. 11090333), Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Z200906194), and Science and Technology Innovative Research Team of Zhejiang Province (No. 2009R50010).en
dc.publisherAmerican Chemical Societyen
dc.titleAtomic bonding between metal and grapheneen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division*
dc.contributor.departmentImaging and Characterization Core Lab*
dc.contributor.departmentAdvanced Nanofabrication, Imaging and Characterization Core Lab*
dc.contributor.departmentMaterials Science and Engineering Program*
dc.contributor.departmentCore Labs*
dc.contributor.departmentComputational Physics and Materials Science (CPMS)*
dc.identifier.journalJournal of Physical Chemistry Cen
dc.contributor.institutionInstitute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China*
kaust.authorCheng, Yingchun*
kaust.authorYao, Yingbang*
kaust.authorWang, Qingxiao*
kaust.authorLi, Kun*
kaust.authorSchwingenschlögl, Udo*
kaust.authorZhang, Xixiang*
kaust.authorWang, Hongtao*


This item appears in the following Collection(s)

Show simple item record