• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ruzziconi, Laura
    Younis, Mohammad I. cc
    Lenci, Stefano
    KAUST Department
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2013-02-20
    Online Publication Date
    2013-02-20
    Print Publication Date
    2013-09
    Permanent link to this record
    http://hdl.handle.net/10754/562658
    
    Metadata
    Show full item record
    Abstract
    In this study we deal with a microelectromechanical system (MEMS) and develop a dynamical integrity analysis to interpret and predict the experimental response. The device consists of a clamped-clamped polysilicon microbeam, which is electrostatically and electrodynamically actuated. It has non-negligible imperfections, which are a typical consequence of the microfabrication process. A single-mode reduced-order model is derived and extensive numerical simulations are performed in a neighborhood of the first symmetric natural frequency, via frequency response diagrams and behavior chart. The typical softening behavior is observed and the overall scenario is explored, when both the frequency and the electrodynamic voltage are varied. We show that simulations based on direct numerical integration of the equation of motion in time yield satisfactory agreement with the experimental data. Nevertheless, these theoretical predictions are not completely fulfilled in some aspects. In particular, the range of existence of each attractor is smaller in practice than in the simulations. This is because these theoretical curves represent the ideal limit case where disturbances are absent, which never occurs under realistic conditions. A reliable prediction of the actual (and not only theoretical) range of existence of each attractor is essential in applications. To overcome this discrepancy and extend the results to the practical case where disturbances exist, a dynamical integrity analysis is developed. After introducing dynamical integrity concepts, integrity profiles and integrity charts are drawn. They are able to describe if each attractor is robust enough to tolerate the disturbances. Moreover, they detect the parameter range where each branch can be reliably observed in practice and where, instead, becomes vulnerable, i.e. they provide valuable information to operate the device in safe conditions according to the desired outcome and depending on the expected disturbances. © 2013 Springer Science+Business Media Dordrecht.
    Citation
    Ruzziconi, L., Younis, M. I., & Lenci, S. (2013). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775. doi:10.1007/s11012-013-9707-x
    Sponsors
    The authors would like to thank Dr. Weili Cui for the fabrication of the MEMS device and Ahmad M. Bataineh for conducting the experimental data. This work has been supported in part by the National Science Foundation through grant # 0846775, and in part by the Italian Ministry of Education, Universities and Research (MIUR) by the PRIN funded program 2010/11 N. 2010MBJK5B.
    Publisher
    Springer Science and Business Media LLC
    Journal
    Meccanica
    DOI
    10.1007/s11012-013-9707-x
    ae974a485f413a2113503eed53cd6c53
    10.1007/s11012-013-9707-x
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.