Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices
dc.contributor.author | Rojas, Jhonathan Prieto | |
dc.contributor.author | Hussain, Muhammad Mustafa | |
dc.date.accessioned | 2015-08-03T10:58:14Z | |
dc.date.available | 2015-08-03T10:58:14Z | |
dc.date.issued | 2013-01-07 | |
dc.identifier.citation | Rojas, J. P., & Hussain, M. M. (2013). Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices. Physica Status Solidi (RRL) - Rapid Research Letters, 7(3), 187–191. doi:10.1002/pssr.201206490 | |
dc.identifier.issn | 18626254 | |
dc.identifier.doi | 10.1002/pssr.201206490 | |
dc.identifier.uri | http://hdl.handle.net/10754/562609 | |
dc.description.abstract | Can we build a flexible and transparent truly high performance computer? High-k/metal gate stack based metal-oxide-semiconductor capacitor devices are monolithically fabricated on industry's most widely used low-cost bulk single-crystalline silicon (100) wafers and then released as continuous, mechanically flexible, optically semi-transparent and high thermal budget compatible silicon fabric with devices. This is the first ever demonstration with this set of materials which allows full degree of freedom to fabricate nanoelectronics devices using state-of-the-art CMOS compatible processes and then to utilize them in an unprecedented way for wide deployment over nearly any kind of shape and architecture surfaces. Electrical characterization shows uncompromising performance of post release devices. Mechanical characterization shows extra-ordinary flexibility (minimum bending radius of 1 cm) making this generic process attractive to extend the horizon of flexible electronics for truly high performance computers. Schematic and photograph of flexible high-k/metal gate MOSCAPs showing high flexibility and C-V plot showing uncompromised performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | |
dc.description.sponsorship | We appreciate the generous baseline funding from KAUST. We also thank the support from the staffs in the KAUST Advanced Nanofabrication Facilities (KANF). We would like to thank Olga Kasimov for the graphic design presented on the back cover. | |
dc.publisher | Wiley | |
dc.subject | Flexible electronics | |
dc.subject | High-k materials | |
dc.subject | Metal gates | |
dc.subject | MOS capacitors | |
dc.subject | Silicon | |
dc.title | Flexible semi-transparent silicon (100) fabric with high-k/metal gate devices | |
dc.type | Article | |
dc.contributor.department | Integrated Nanotechnology Lab | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.identifier.journal | physica status solidi (RRL) - Rapid Research Letters | |
kaust.person | Rojas, Jhonathan Prieto | |
kaust.person | Hussain, Muhammad Mustafa | |
dc.date.published-online | 2013-01-07 | |
dc.date.published-print | 2013-03 |
This item appears in the following Collection(s)
-
Articles
-
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Integrated Nanotechnology Lab
For more information visit: https://nanotechnology.kaust.edu.sa/Pages/Home.aspx -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/