• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Numerical simulation and performance investigation of an advanced adsorption desalination cycle

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Thu, Kyaw
    Chakraborty, Anutosh
    Kim, Youngdeuk
    Myat, Aung
    SAHA, Bidyut Baran
    Ng, Kim Choon cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2013-01
    Permanent link to this record
    http://hdl.handle.net/10754/562572
    
    Metadata
    Show full item record
    Abstract
    Low temperature waste heat-driven adsorption desalination (AD) cycles offer high potential as one of the most economically viable and environmental-friendly desalination methods. This article presents the development of an advanced adsorption desalination cycle that employs internal heat recovery between the evaporator and the condenser, utilizing an encapsulated evaporator-condenser unit for effective heat transfer. A simulation model has been developed based on the actual sorption characteristics of the adsorbent-adsorbate pair, energy and mass balances applied to the components of the AD cycle. With an integrated design, the temperature in the evaporator and the vapor pressurization of the adsorber are raised due to the direct heat recovery from the condenser, resulting in the higher water production rates, typically improved by as much as three folds of the conventional AD cycle. In addition, the integrated design eliminates two pumps, namely, the condenser cooling water and the chilled water pumps, lowering the overall electricity consumption. The performance of the cycle is analyzed at assorted heat source and cooling water temperatures, and different cycle times as well as the transient heat transfer coefficients of the evaporation and condensation. © 2012 Elsevier B.V.
    Citation
    Thu, K., Chakraborty, A., Kim, Y.-D., Myat, A., Saha, B. B., & Ng, K. C. (2013). Numerical simulation and performance investigation of an advanced adsorption desalination cycle. Desalination, 308, 209–218. doi:10.1016/j.desal.2012.04.021
    Publisher
    Elsevier BV
    Journal
    Desalination
    DOI
    10.1016/j.desal.2012.04.021
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.desal.2012.04.021
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.