• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota)

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Tornabene, Luke
    Ahmadia, Gabby N.
    Berumen, Michael L. cc
    Smith, David J. cc
    Jompa, Jamaluddìn
    Pezold, Frank L.
    KAUST Department
    Red Sea Research Center (RSRC)
    Biological and Environmental Sciences and Engineering (BESE) Division
    Marine Science Program
    Reef Ecology Lab
    Date
    2013-01
    Permanent link to this record
    http://hdl.handle.net/10754/562567
    
    Metadata
    Show full item record
    Abstract
    Gobies (Teleostei: Gobiidae) are an extremely diverse and widely distributed group and are the second most species rich family of vertebrates. Ecological drivers are key to the evolutionary success of the Gobiidae. However, ecological and phylogenetic data are lacking for many diverse genera of gobies. Our study investigated the evolution of microhabitat association across the phylogeny of 18 species of dwarfgobies (genus Eviota), an abundant and diverse group of coral reef fishes. In addition, we also explore the evolution of pectoral fin-ray branching and sensory head pores to determine the relationship between morphological evolution and microhabitat shifts. Our results demonstrate that Eviota species switched multiple times from a facultative hard-coral association to inhabiting rubble or mixed sand/rubble habitat. We found no obvious relationship between microhabitat shifts and changes in pectoral fin-ray branching or reduction in sensory pores, with the latter character being highly homoplasious throughout the genus. The relative flexibility in coral-association in Eviota combined with the ability to move into non-coral habitats suggests a genetic capacity for ecological release in contrast to the strict obligate coral-dwelling relationship commonly observed in closely related coral gobies, thus promoting co-existence through fine scale niche partitioning. The variation in microhabitat association may facilitate opportunistic ecological speciation, and species persistence in the face of environmental change. This increased speciation opportunity, in concert with a high resilience to extinction, may explain the exceptionally high diversity seen in Eviota compared to related genera in the family. © 2012 Elsevier Inc.
    Citation
    Tornabene, L., Ahmadia, G. N., Berumen, M. L., Smith, D. J., Jompa, J., & Pezold, F. (2013). Evolution of microhabitat association and morphology in a diverse group of cryptobenthic coral reef fishes (Teleostei: Gobiidae: Eviota). Molecular Phylogenetics and Evolution, 66(1), 391–400. doi:10.1016/j.ympev.2012.10.014
    Sponsors
    We thank Jocelyn Curtis-Quick, Dan Lazell, Abi Powell, Iwan, Pippa Mansell, Laura Sheard, Conservation Society of Pohnpei, and Brian Lynch and students from the College of Micronesia for assistance in the field. Mike Cavazos, Tim Harlow, Andrew Layman, and Elizabeth Hinkle assisted with lab work. Ryan Chabarria and Sharon Furiness assisted with lab work and contributed helpful discussion. We thank David Greenfield for assisting with identifications of some species and he and Rick Winterbottom for providing preliminary dichotomous keys for Eviota species. We gratefully acknowledge the support of the staff at the Hoga Marine Research Center, Universitas Hasanuddin (UNHAS), the Wakatobi Government, the Tamana National Wakatobi, the State Ministry of Research and Technology (RISTEK), the KAUST Coastal and Marine Resources Core Lab, and the staff of the Berkley Gump Station in Moorea. Barbara Brown at AMNH, Dave Catania at CAS, and Renny Kurnia Hadiaty at MZB provided assistance with depositing voucher specimens. The first and second authors are indebted to E.V. Ohta and her family members for their selfless contributions that made this project possible. Funding for field work was provided by Operation Wallacea, and by NSF OISE-0553910 to FP.
    Publisher
    Elsevier BV
    Journal
    Molecular Phylogenetics and Evolution
    DOI
    10.1016/j.ympev.2012.10.014
    PubMed ID
    23099149
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.ympev.2012.10.014
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Red Sea Research Center (RSRC); Marine Science Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.