Show simple item record

dc.contributor.authorHuang, Xiaohu
dc.contributor.authorLi, Guanghai
dc.contributor.authorKong, Lingbing
dc.contributor.authorHuang, Yizhong
dc.contributor.authorWu, Tao
dc.date.accessioned2015-08-03T10:42:06Z
dc.date.available2015-08-03T10:42:06Z
dc.date.issued2013
dc.identifier.citationHuang, X., Li, G., Kong, L. B., Huang, Y. Z., & Wu, T. (2013). Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young’s modulus. Nanoscale, 5(23), 11643. doi:10.1039/c3nr81284g
dc.identifier.issn20403364
dc.identifier.doi10.1039/c3nr81284g
dc.identifier.urihttp://hdl.handle.net/10754/562545
dc.description.abstractUnderstanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young's modulus of single-crystalline Co nanowires investigated by in situ X-ray diffraction measurements. Diameter-dependent initial longitudinal elongation of the nanowires is observed and ascribed to the anisotropic surface stress due to the Poisson effect, which serves as the basis for mechanical measurements. As the nanowire diameter decreases, a transition from the "smaller is softer" regime to the "smaller is tougher" regime is observed in the Young's modulus of the nanowires, which is attributed to the competition between the elongation softening and the surface stiffening effects. Our work demonstrates a new nondestructive method capable of measuring the initial surface strain and estimating the Young's modulus of single crystalline nanowires, and provides new insights on the size effect. © 2013 The Royal Society of Chemistry.
dc.description.sponsorshipThe authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant no. 11174285), the Innovation Centre of Singapore-MIT Alliance for Research and Technology (Grant no. ING12050-ENG(IGN)) and Singapore Ministry of Education (Grant no. RG44/12).
dc.publisherRoyal Society of Chemistry (RSC)
dc.titleAnisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentLaboratory of Nano Oxides for Sustainable Energy
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalNanoscale
dc.contributor.institutionKey Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, China
dc.contributor.institutionSchool of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
kaust.personWu, Tao


This item appears in the following Collection(s)

Show simple item record