Controlled acrylate insertion regioselectivity in diazaphospholidine- sulfonato palladium(II) complexes
Type
ArticleAuthors
Wucher, PhilippRoesle, Philipp
Falivene, Laura

Cavallo, Luigi

Caporaso, Lucia

Göttker-Schnetmann, Inigo J.
Mecking, Stefan
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionChemical Science Program
KAUST Catalysis Center (KCC)
Physical Science and Engineering (PSE) Division
Date
2012-12-07Online Publication Date
2012-12-07Print Publication Date
2012-12-24Permanent link to this record
http://hdl.handle.net/10754/562465
Metadata
Show full item recordAbstract
Diazaphospholidine-sulfonato Pd(II) complexes [{κ2-P,O-(N- Ar2C2H4N2P)C6H 4SO3}PdMe(L)] 1-L (L = dmso, pyridine, lutidine, or μ-LiCl(solvent); 1a: Ar = Ph, 1b: Ar = 2-MeC6H4, 1c: Ar = 2-MeOC6H4, 1d: Ar = 2,4,6-Me3C 6H2, 1e: Ar = 2,6-iPr2C6H 3, 1f: Ar = 2,6-(p-tolyl)2C6H3) were prepared and structurally characterized. The regioselectivity of methyl acrylate (MA) insertion into the Pd-Me bond is entirely inverted from >93% 1,2-insertion for bulky substituents (1d-f, yielding the insertion products [(P̂O)Pd{κ2-C,O-CH2CHMeC(O)OMe], 12) to the usual electronically controlled 2,1-insertion (>95%) for the less bulky Ar = Ph (1a, yielding the insertion product [(P̂O)Pd{κ2-C,O- CHEtC(O)OMe], 11, and β-H elimination product methyl crotonate). DFT studies underline that this is due to a more favorable insertion transition state (2,1- favored by 12 kJ mol-1 over 1,2- for 1a) vs destabilization of the 2,1-insertion transition state in 1d,e. By contrast, MA insertion into the novel isolated and structurally characterized hydride and deuteride complexes [{κ2-P,O-(N-Ar2C 2H4N2P)C6H4SO 3}PdR(lutidine)] (Ar = 2,6-iPr2C6H3; 9e: R = H, 10e: R = D) occurs 2,1-selectively. This is due to the insertion occurring from the isomer with the P-donor and the olefin in trans arrangement, rather than the insertion into the alkyl from the cis isomer in which the olefin is in proximity to the bulky diazaphospholidine. 1a-f are precursors to active catalysts for ethylene polymerization to highly linear polyethylene with M n up to 35 000 g mol-1. In copolymerization experiments, norbornene was incorporated in up to 6.1 mol % into the polyethylene backbone. © 2012 American Chemical Society.Citation
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2012). Controlled Acrylate Insertion Regioselectivity in Diazaphospholidine-Sulfonato Palladium(II) Complexes. Organometallics, 31(24), 8505–8515. doi:10.1021/om300755jSponsors
Financial support by the DFG (Me1388/10-1) is gratefully acknowledged. The authors thank Lars Bolk for GPC, Anke Friemel and Ulrich Haunz for support with NMR measurements, and the HPC team of Enea (www.enea.it) for use of the ENEA-GRID and the HPC facilities CRESCO (www.cresco.enea.it) in Portici, Italy.Publisher
American Chemical Society (ACS)Journal
OrganometallicsRelations
Is Supplemented By:- [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894982: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19dp. DOI: 10.5517/ccz19dp HANDLE: 10754/624732 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894983: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19fq. DOI: 10.5517/ccz19fq HANDLE: 10754/624733 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894984: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19gr. DOI: 10.5517/ccz19gr HANDLE: 10754/624734 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894985: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19hs. DOI: 10.5517/ccz19hs HANDLE: 10754/624735 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894986: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19jt. DOI: 10.5517/ccz19jt HANDLE: 10754/624736 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894987: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19kv. DOI: 10.5517/ccz19kv HANDLE: 10754/624737 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894988: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19lw. DOI: 10.5517/ccz19lw HANDLE: 10754/624738 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894989: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19mx. DOI: 10.5517/ccz19mx HANDLE: 10754/624739 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894990: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19ny. DOI: 10.5517/ccz19ny HANDLE: 10754/624740 - [Dataset]
Wucher, P., Roesle, P., Falivene, L., Cavallo, L., Caporaso, L., Göttker-Schnetmann, I., & Mecking, S. (2013). CCDC 894991: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccz19pz. DOI: 10.5517/ccz19pz HANDLE: 10754/624741
ae974a485f413a2113503eed53cd6c53
10.1021/om300755j