• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Zhao, Yunfeng cc
    Liu, Xin
    Yao, Kexin
    Zhao, Lan
    Han, Yu cc
    KAUST Department
    Advanced Membranes and Porous Materials Research Center
    Advanced Nanofabrication, Imaging and Characterization Core Lab
    Biological and Environmental Sciences and Engineering (BESE) Division
    Chemical Science Program
    Imaging and Characterization Core Lab
    KAUST Catalysis Center (KCC)
    Nanostructured Functional Materials (NFM) laboratory
    Physical Science and Engineering (PSE) Division
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2012-12-03
    Online Publication Date
    2012-12-03
    Print Publication Date
    2012-12-21
    Permanent link to this record
    http://hdl.handle.net/10754/562462
    
    Metadata
    Show full item record
    Abstract
    We designed and prepared a novel microporous carbon material (KNC-A-K) for selective CO2 capture. The combination of a high N-doping concentration (>10 wt %) and extra-framework cations, which were introduced into carbonaceous sorbents for the first time, endowed KNC-A-K with exceptional CO2 adsorption capabilities, especially at low pressures. Specifically, KNC-A-K exhibited CO2 uptake of 1.62 mmol g -1 at 25 C and 0.1 bar, far exceeding the CO2 adsorption capability of most reported carbon material to date. Single component adsorption isotherms indicated that its CO2/N2 selectivity was 48, which also significantly surpasses the selectivity of conventional carbon materials. Furthermore, breakthrough experiments were conducted to evaluate the CO2 separation capability of KNC-A-K on CO2/N2 (10:90 v/v) mixtures under kinetic flow conditions, and the obtained CO 2/N2 selectivity was as high as 44, comparable to that predicted from equilibrium adsorption data. Upon facile regeneration, KNC-A-K showed constant CO2 adsorption capacity and selectivity during multiple mixed-gas separation cycles. Its outstanding low-pressure CO 2 adsorption ability makes KNC-A-K a promising candidate for selective CO2 capture from flue gas. Theoretical calculations indicated that K+ ions play a key role in promoting CO2 adsorption via electrostatic interactions. In addition, we found that HCl molecules anchored in N-doped carbon have a similar promotion effect on CO 2 adsorption, which contradicts the conventional wisdom that the neutralization of basic sites by acids diminishes the adsorption of acidic CO2 gas. © 2012 American Chemical Society.
    Sponsors
    This research was supported by baseline funding and an AEA research grant from KAUST to Yu Han.
    Publisher
    American Chemical Society (ACS)
    Journal
    Chemistry of Materials
    DOI
    10.1021/cm303072n
    ae974a485f413a2113503eed53cd6c53
    10.1021/cm303072n
    Scopus Count
    Collections
    Articles; Biological and Environmental Sciences and Engineering (BESE) Division; Advanced Membranes and Porous Materials Research Center; Imaging and Characterization Core Lab; Physical Science and Engineering (PSE) Division; Chemical Science Program; KAUST Catalysis Center (KCC); Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.