Optimization of approximate decision rules relative to number of misclassifications
Type
ArticleKAUST Department
Applied Mathematics and Computational Science ProgramComputer Science Program
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Extensions of Dynamic Programming, Machine Learning and Discrete Optimization Research Group
Date
2012-12-01Permanent link to this record
http://hdl.handle.net/10754/562452
Metadata
Show full item recordAbstract
In the paper, we study an extension of dynamic programming approach which allows optimization of approximate decision rules relative to the number of misclassifications. We introduce an uncertainty measure J(T) which is a difference between the number of rows in a decision table T and the number of rows with the most common decision for T. For a nonnegative real number γ, we consider γ-decision rules that localize rows in subtables of T with uncertainty at most γ. The presented algorithm constructs a directed acyclic graph Δγ(T). Based on this graph we can describe the whole set of so-called irredundant γ-decision rules. We can optimize rules from this set according to the number of misclassifications. Results of experiments with decision tables from the UCI Machine Learning Repository are presented. © 2012 The authors and IOS Press. All rights reserved.Publisher
IOS PressISBN
9781614991045ae974a485f413a2113503eed53cd6c53
10.3233/978-1-61499-105-2-674