Show simple item record

dc.contributor.authorBisetti, Fabrizio
dc.contributor.authorEl Morsli, Mbark
dc.date.accessioned2015-08-03T10:38:19Z
dc.date.available2015-08-03T10:38:19Z
dc.date.issued2012-12
dc.identifier.citationBisetti, F., & El Morsli, M. (2012). Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames. Combustion and Flame, 159(12), 3518–3521. doi:10.1016/j.combustflame.2012.08.002
dc.identifier.issn00102180
dc.identifier.doi10.1016/j.combustflame.2012.08.002
dc.identifier.urihttp://hdl.handle.net/10754/562441
dc.description.abstractSimulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.
dc.description.sponsorshipThis work was supported by two Academic Excellence Alliance (AEA) Grants awarded by the KAUST Office of Competitive Research Funds under the titles "Electromagnetically-enhanced combustion" and "Tracking uncertainty in computational modeling of reactive systems". The authors would like to thank the two anonymous reviewers for their insightful comments and suggestions.
dc.publisherElsevier BV
dc.subjectDiffusion coefficient
dc.subjectMobility
dc.subjectPremixed flames
dc.subjectThermal electrons
dc.titleCalculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentReactive Flow Modeling Laboratory (RFML)
dc.identifier.journalCombustion and Flame
kaust.personBisetti, Fabrizio
kaust.personEl Morsli, Mbark
kaust.acknowledged.supportUnitCompetitive Research Funds


This item appears in the following Collection(s)

Show simple item record