Show simple item record

dc.contributor.authorCencelj, Matija
dc.contributor.authorRepovš, Dušan
dc.contributor.authorSkopenkov, Mikhail
dc.date.accessioned2015-08-03T10:37:51Z
dc.date.available2015-08-03T10:37:51Z
dc.date.issued2013-01-22
dc.identifier.issn10645616
dc.identifier.doi10.1070/SM2012v203n11ABEH004281
dc.identifier.doi10.4213/sm8098
dc.identifier.urihttp://hdl.handle.net/10754/562427
dc.description.abstractThis paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.
dc.description.sponsorshipThe first and second authors were supported in part by the Slovenian Research Agency (grant nos. P1-0292-0101 and J1-4144-0101). The third author was supported in part by the Russian Foundation for Basic Research (grant no. 12-01-00748-a), the Programme of the President of the Russian Federation for the Support of Young Scientists (grant no. MK-3965.2012.1), the "Dynasty" Foundation and the Simons Foundation.
dc.publisherTurpion-Moscow Limited
dc.relation.urlhttp://arxiv.org/abs/arXiv:0811.2745v3
dc.subjectEmbedding
dc.subjectKnotted torus
dc.subjectLink
dc.subjectLink map
dc.subjectSurgery
dc.titleClassification of knotted tori in 2-metastable dimension
dc.typeArticle
dc.contributor.departmentVisual Computing Center (VCC)
dc.identifier.journalSbornik: Mathematics
dc.contributor.institutionInstitute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
dc.contributor.institutionUniversity of Ljubljana, Ljubljana, Slovenia
dc.contributor.institutionInstitute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
dc.identifier.arxividarXiv:0811.2745
kaust.personSkopenkov, Mikhail
dc.date.published-online2013-01-22
dc.date.published-print2012-11-30
dc.date.posted2008-11-17


This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version