Classification of knotted tori in 2-metastable dimension
Type
ArticleAuthors
Cencelj, MatijaRepovš, Dušan
Skopenkov, Mihail B
KAUST Department
Visual Computing Center (VCC)Preprint Posting Date
2008-11-17Online Publication Date
2013-01-22Print Publication Date
2012-11-30Date
2013-01-22Abstract
This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.Citation
Cencelj, M., Repovš, D., & Skopenkov, M. B. (2012). Classification of knotted tori in 2-metastable dimension. Sbornik: Mathematics, 203(11), 1654–1681. doi:10.1070/sm2012v203n11abeh004281Acknowledgements
The first and second authors were supported in part by the Slovenian Research Agency (grant nos. P1-0292-0101 and J1-4144-0101). The third author was supported in part by the Russian Foundation for Basic Research (grant no. 12-01-00748-a), the Programme of the President of the Russian Federation for the Support of Young Scientists (grant no. MK-3965.2012.1), the "Dynasty" Foundation and the Simons Foundation.Publisher
IOP PublishingJournal
Sbornik: MathematicsDOI
10.1070/SM2012v203n11ABEH004281arXiv
0811.2745Additional Links
http://www.crossref.org/iPage?doi=10.1070%2FSM2012v203n11ABEH004281http://arxiv.org/pdf/0811.2745Permanent link to this record
Collections
Version History
You are currently viewing version 1 of the item.