• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Small molecule-guided thermoresponsive supramolecular assemblies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Rancatore, Benjamin J.
    Mauldin, Clayton E.
    Frechet, Jean cc
    Xu, Ting
    KAUST Department
    Chemical Science Program
    Office of the VP
    Physical Science and Engineering (PSE) Division
    Date
    2012-10-05
    Online Publication Date
    2012-10-05
    Print Publication Date
    2012-10-23
    Permanent link to this record
    http://hdl.handle.net/10754/562372
    
    Metadata
    Show full item record
    Abstract
    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.
    Citation
    Rancatore, B. J., Mauldin, C. E., Fréchet, J. M. J., & Xu, T. (2012). Small Molecule-Guided Thermoresponsive Supramolecular Assemblies. Macromolecules, 45(20), 8292–8299. doi:10.1021/ma301727q
    Sponsors
    This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.
    Publisher
    American Chemical Society (ACS)
    Journal
    Macromolecules
    DOI
    10.1021/ma301727q
    ae974a485f413a2113503eed53cd6c53
    10.1021/ma301727q
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.