• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Compact printed multiband antenna with independent setting suitable for fixed and reconfigurable wireless communication systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Abutarboush, Hattan
    Nilavalan, Rajagopal
    Cheung, Sing Wai
    Nasr, Karim Medhat A
    KAUST Department
    Electrical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2012-08
    Permanent link to this record
    http://hdl.handle.net/10754/562256
    
    Metadata
    Show full item record
    Abstract
    This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results. © 1963-2012 IEEE.
    Citation
    Abutarboush, H. F., Nilavalan, R., Cheung, S. W., & Nasr, K. M. (2012). Compact Printed Multiband Antenna With Independent Setting Suitable for Fixed and Reconfigurable Wireless Communication Systems. IEEE Transactions on Antennas and Propagation, 60(8), 3867–3874. doi:10.1109/tap.2012.2201108
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Antennas and Propagation
    DOI
    10.1109/TAP.2012.2201108
    ae974a485f413a2113503eed53cd6c53
    10.1109/TAP.2012.2201108
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Electrical and Computer Engineering Program

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Guest Editorial Antenna-in-Package, Antenna-on-Chip, Antenna-IC Interface: Joint Design and Cointegration

      Hong, Wonbin; Maaskant, Rob; Liu, Duixian; Wang, Hua; Shamim, Atif; Smolders, Bart; Manteuffel, DIrk; Zhang, Yueping (IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers (IEEE), 2019-11-05) [Article]
      The twenty peer-reviewed letters in this special section examine the design and cointegration of antenna-in-package (AiP), antenna-on-chip (AoC), and antenna ICs (AIC). The letters are categorized in the four distinctive categories: 1) Fabrication technologies (four); 2) Measurement strategies; 3) Applications; and 4) New design and integration strategies. Fruition of major thrusts such as 5G/6G, high-resolution radar and imaging, autonomous driving, and space technology are highly intertwined with the advance of applied electromagnetics. Miniaturization and seamless integration of microwave components and radio systems can enable superior performance, form factor, and cost efficiencies leading to enhanced proliferation of such applications. Historically, radio frequency front ends, antennas, and microwave components have separately evolved using distinct fabrication and measurement technologies.
    • Thumbnail

      Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

      Hussain, Rifaqat; Sharawi, Mohammad S. (IET Microwaves, Antennas & Propagation, Institution of Engineering and Technology (IET), 2015-06-18) [Article]
      © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm$^{2}$. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.
    • Thumbnail

      Miniaturized, low power, wireless transmitter and receiver with on-chip antenna, and wireless coupling of on-chip and off-chip antenna

      Shamim, Atif; Arsalan, Muhammad; Roy, Langis (2010-04-22) [Patent]
      A miniaturized, low power RF transmitter with a dual mode active on-chip antenna/inductor is disclosed in which antenna also serves as the oscillator inductor. Also disclosed is a miniaturized low power RF receiver with an on-chip antenna; and a RF transmitter system wherein an on-chip antenna is wirelessly coupled to an off chip patch antenna are disclosed. Advantageously, the TX chip is housed in a low loss, e.g. Low Temperature Co-fired Ceramic (LTCC) package with a patch antenna to provide a System-on-Package implementation comprising electromagnetic coupling between a RF TX chip comprising an integrated on-chip antenna and a package antenna. The on-chip antenna feeds the LTCC patch antenna through aperture coupling, thus negating the need for RF buffer amplifiers, matching elements, baluns, bond wires and package transmission lines, and significantly increases the gain and range of the module with respect to the on-chip antenna alone, without deterioration of the circuit performance and power consumption. Exemplary embodiments are disclosed which may be fabricated using standard CMOS technology, for operation in the 5 GHz U-NII band for applications such as miniaturized, low cost, low power wireless devices and sensor systems.
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.