Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control
Type
ArticleAuthors
Miller, Daniel J.Araújo, Paula A.
Correia, Patrícia B.
Ramsey, Matthew M.
Kruithof, Joop C.
van Loosdrecht, Mark C.M.

Freeman, Benny Dean
Paul, Donald
Whiteley, Marvin
Vrouwenvelder, Johannes S.

KAUST Department
Water Desalination and Reuse Research Center (WDRC)Environmental Science and Engineering Program
Date
2012-08Permanent link to this record
http://hdl.handle.net/10754/562255
Metadata
Show full item recordAbstract
Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.Citation
Miller, D. J., Araújo, P. A., Correia, P. B., Ramsey, M. M., Kruithof, J. C., van Loosdrecht, M. C. M., … Vrouwenvelder, J. S. (2012). Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Research, 46(12), 3737–3753. doi:10.1016/j.watres.2012.03.058Sponsors
The authors are grateful for support from the National Science Foundation Graduate Research Fellowship Program (0648993) and the National Science Foundation Science and Technology Center for Layered Polymeric Systems (DMR-0423914). Part of the work was performed by Wetsus, Centre of Excellence for Sustainable Water Technology, funded by the Dutch Ministry of Economic Affairs. The authors like to thank the participants of the Wetsus research theme "biofouling" and Evides water-bedrijf for the fruitful discussions and their financial support. In addition, Florian Beyer, Harm van der Kooi, Wim Borgonje and Arie Zwijnenburg are thanked for their contribution to the experimental studies. Andrew Ellington at the University of Texas at Austin is acknowledged for his assistance with the fluorescent protein adhesion tests.Publisher
Elsevier BVJournal
Water ResearchPubMed ID
22578432ae974a485f413a2113503eed53cd6c53
10.1016/j.watres.2012.03.058
Scopus Count
Related articles
- Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol).
- Authors: Dobosz KM, Kuo-LeBlanc CA, Emrick T, Schiffman JD
- Issue date: 2019 Feb 5
- Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine.
- Authors: Zhi X, Li P, Gan X, Zhang W, Shen T, Yuan J, Shen J
- Issue date: 2014
- Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators.
- Authors: Siddiqui A, Lehmann S, Bucs SS, Fresquet M, Fel L, Prest EIEC, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS
- Issue date: 2017 Mar 1
- Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.
- Authors: Li X, Cai T, Chung TS
- Issue date: 2014 Aug 19
- Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions.
- Authors: Bera A, Trivedi JS, Kumar SB, Chandel AKS, Haldar S, Jewrajka SK
- Issue date: 2018 Feb 5