Type
ArticleAuthors
Ip, AlexThon, Susanna
Hoogland, Sjoerd H.
Voznyy, Oleksandr

Zhitomirsky, David
Debnath, Ratan K.
Levina, Larissa
Rollny, Lisa R.
Carey, Graham H.
Fischer, Armin H.
Kemp, Kyle W.
Kramer, Illan J.

Ning, Zhijun
Labelle, André J.
Chou, Kang Wei
Amassian, Aram

Sargent, E. H.
KAUST Department
KAUST Solar Center (KSC)Material Science and Engineering Program
Organic Electronics and Photovoltaics Group
Physical Science and Engineering (PSE) Division
KAUST Grant Number
KUS-11-009-21Date
2012-07-29Online Publication Date
2012-07-29Print Publication Date
2012-09Permanent link to this record
http://hdl.handle.net/10754/562250
Metadata
Show full item recordAbstract
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.Citation
Ip, A. H., Thon, S. M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., … Sargent, E. H. (2012). Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 7(9), 577–582. doi:10.1038/nnano.2012.127Sponsors
This publication is based in part on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors thank Angstrom Engineering and Innovative Technology for useful discussions regarding material deposition methods and control of the glovebox environment, respectively. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). The authors thank L. Goncharova, M. T. Greiner, E. Palmiano, R. Wolowiec and D. Kopilovic for their help during the course of the study. A. H. I. acknowledges support from the Queen Elizabeth II Graduate Scholarship in Science and Technology. D. Z. acknowledges support from the NSERC CGS D scholarship.Publisher
Springer NatureJournal
Nature NanotechnologyPubMed ID
22842552ae974a485f413a2113503eed53cd6c53
10.1038/nnano.2012.127
Scopus Count
Related articles
- Depleted-heterojunction colloidal quantum dot solar cells.
- Authors: Pattantyus-Abraham AG, Kramer IJ, Barkhouse AR, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin MK, Grätzel M, Sargent EH
- Issue date: 2010 Jun 22
- Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.
- Authors: Jeong KS, Tang J, Liu H, Kim J, Schaefer AW, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent EH, Asbury JB
- Issue date: 2012 Jan 24
- Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress.
- Authors: Tang J, Sargent EH
- Issue date: 2011 Jan 4
- Colloidal-quantum-dot photovoltaics using atomic-ligand passivation.
- Authors: Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou KW, Fischer A, Amassian A, Asbury JB, Sargent EH
- Issue date: 2011 Oct
- Remote trap passivation in colloidal quantum dot bulk nano-heterojunctions and its effect in solution-processed solar cells.
- Authors: Rath AK, Pelayo Garcia de Arquer F, Stavrinadis A, Lasanta T, Bernechea M, Diedenhofen SL, Konstantatos G
- Issue date: 2014 Jul 16