Type
ArticleKAUST Department
Clean Combustion Research CenterHigh-Speed Fluids Imaging Laboratory
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2012-07-18Online Publication Date
2012-07-18Print Publication Date
2012-09Permanent link to this record
http://hdl.handle.net/10754/562243
Metadata
Show full item recordAbstract
We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.Citation
Thoroddsen, S. T., Takehara, K., & Etoh, T. G. (2012). Micro-splashing by drop impacts. Journal of Fluid Mechanics, 706, 560–570. doi:10.1017/jfm.2012.281Sponsors
S.T.T. was partially supported by KAUST GCR AEA Grant 70000000028 (Fine-Resolution Printing).Publisher
Cambridge University Press (CUP)Journal
Journal of Fluid Mechanicsae974a485f413a2113503eed53cd6c53
10.1017/jfm.2012.281