Show simple item record

dc.contributor.authorSedky, Sherif M.
dc.contributor.authorTawfik, Hani H.
dc.contributor.authorAshour, Mohamed
dc.contributor.authorGraham, Andrew B.
dc.contributor.authorProvine, John W.
dc.contributor.authorWang, Qingxiao
dc.contributor.authorZhang, Xixiang
dc.contributor.authorHowe, Roger T.
dc.date.accessioned2015-08-03T09:56:43Z
dc.date.available2015-08-03T09:56:43Z
dc.date.issued2012-06-07
dc.identifier.citationSedky, S., Tawfik, H., Ashour, M., Graham, A. B., Provine, J., Wang, Q., … Howe, R. T. (2012). Microencapsulation of silicon cavities using a pulsed excimer laser. Journal of Micromechanics and Microengineering, 22(7), 075012. doi:10.1088/0960-1317/22/7/075012
dc.identifier.issn09601317
dc.identifier.doi10.1088/0960-1317/22/7/075012
dc.identifier.urihttp://hdl.handle.net/10754/562217
dc.description.abstractThis work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.
dc.publisherIOP Publishing
dc.titleMicroencapsulation of silicon cavities using a pulsed excimer laser
dc.typeArticle
dc.contributor.departmentAdvanced Nanofabrication, Imaging and Characterization Core Lab
dc.contributor.departmentCore Labs
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJournal of Micromechanics and Microengineering
dc.contributor.institutionAmerican University in Cairo, School of Sciences and Engineering, Physics Department, New Cairo, Egypt
dc.contributor.institutionStanford University, CA, United States
dc.contributor.institutionZewail City of Science and Technology, Giza, Egypt
kaust.personWang, Qingxiao
kaust.personZhang, Xixiang
dc.date.published-online2012-06-07
dc.date.published-print2012-07-01


This item appears in the following Collection(s)

Show simple item record