Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control

The influence of polydopamine- and polydopamine-. graft-poly(ethylene glycol)-coated feed spacers and membranes, copper-coated feed spacers, and commercially-available biostatic feed spacers on biofouling has been studied in membrane fouling simulators. Feed spacers and membranes applied in practical membrane filtration systems were used; biofouling development was monitored by feed channel pressure drop increase and biomass accumulation. Polydopamine and polydopamine-. g-PEG are hydrophilic surface modification agents expected to resist protein and bacterial adhesion, while copper feed spacer coatings and biocides infused in feed spacers are expected to restrict biological growth. Our studies showed that polydopamine and polydopamine-. g-PEG coatings on feed spacers and membranes, copper coatings on feed spacers, and a commercial biostatic feed spacer did not have a significant impact on feed channel pressure drop increase and biofilm accumulation as measured by ATP and TOC content. The studied spacer and membrane modifications were not effective for biofouling control; it is doubtful that feed spacer and membrane modification, in general, may be effective for biofouling control regardless of the type of applied coating. © 2012 Elsevier B.V.

Araújo, P. A., Miller, D. J., Correia, P. B., van Loosdrecht, M. C. M., Kruithof, J. C., Freeman, B. D., … Vrouwenvelder, J. S. (2012). Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination, 295, 1–10. doi:10.1016/j.desal.2012.02.026

This work was performed by Wetsus, Centre of Excellence for Sustainable Water Technology and Delft University of Technology. Wetsus is funded by the Dutch Ministry of Economic Affairs. The authors like to thank the participants of the Wetsus theme 'Biofouling' and Evides waterbedrijf for the fruitful discussions and their financial support. The input of Marcel Boorsma, Paul Buijs, Florian Beyer, Maud Villain, Harold Hollander, Harm van der Kooi, Wim Borgonje and Arie Zwijnenburg is fully acknowledged. The authors gratefully acknowledge the National Science Foundation Graduate Research Fellowship Program (0648993) and the National Science Foundation Science and Technology Center for Layered Polymeric Systems (DMR-0423914) for support.

Elsevier BV



Permanent link to this record