Show simple item record

dc.contributor.authorRen, Wei
dc.contributor.authorFarooq, Aamir
dc.contributor.authorDavidson, David Frank
dc.contributor.authorHanson, Ronald Kenneth
dc.date.accessioned2015-08-03T09:47:01Z
dc.date.available2015-08-03T09:47:01Z
dc.date.issued2012-05-25
dc.identifier.issn09462171
dc.identifier.doi10.1007/s00340-012-5046-1
dc.identifier.urihttp://hdl.handle.net/10754/562196
dc.description.abstractA sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.
dc.description.sponsorshipThis work was supported by the Combustion Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198, the Army Research Office (ARO) with Dr. Ralph Anthenien as contract monitor, and the Air Force Office of Scientific Research (AFOSR) with Dr. Julian Tishkoff as technical monitor. The authors thank Dr. Jay Jeffries for his help on the selection and specification of the lasers and acquisition of the needed support electronics.
dc.publisherSpringer Nature
dc.titleCO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentChemical Kinetics & Laser Sensors Laboratory
dc.identifier.journalApplied Physics B
dc.contributor.institutionHigh Temperature Gasdynamics Laboratory, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States
kaust.personFarooq, Aamir


This item appears in the following Collection(s)

Show simple item record