• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ren, Wei
    Farooq, Aamir cc
    Davidson, David Frank
    Hanson, Ronald Kenneth
    KAUST Department
    Chemical Kinetics & Laser Sensors Laboratory
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2012-05-25
    Online Publication Date
    2012-05-25
    Print Publication Date
    2012-06
    Permanent link to this record
    http://hdl.handle.net/10754/562196
    
    Metadata
    Show full item record
    Abstract
    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.
    Citation
    Ren, W., Farooq, A., Davidson, D. F., & Hanson, R. K. (2012). CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm. Applied Physics B, 107(3), 849–860. doi:10.1007/s00340-012-5046-1
    Sponsors
    This work was supported by the Combustion Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198, the Army Research Office (ARO) with Dr. Ralph Anthenien as contract monitor, and the Air Force Office of Scientific Research (AFOSR) with Dr. Julian Tishkoff as technical monitor. The authors thank Dr. Jay Jeffries for his help on the selection and specification of the lasers and acquisition of the needed support electronics.
    Publisher
    Springer Nature
    Journal
    Applied Physics B
    DOI
    10.1007/s00340-012-5046-1
    ae974a485f413a2113503eed53cd6c53
    10.1007/s00340-012-5046-1
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.