• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Functionalized isothianaphthene monomers that promote quinoidal character in donor-acceptor copolymers for organic photovoltaics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Douglas, Jessica D.
    Griffini, Gianmarco
    Holcombe, Thomas W.
    Young, Eric P.
    Lee, Olivia P.
    Chen, Mark S.
    Frechet, Jean cc
    KAUST Department
    Chemical Science Program
    Office of the VP
    Physical Science and Engineering (PSE) Division
    Date
    2012-05-03
    Online Publication Date
    2012-05-03
    Print Publication Date
    2012-05-22
    Permanent link to this record
    http://hdl.handle.net/10754/562190
    
    Metadata
    Show full item record
    Abstract
    A series of low band gap isothianaphthene-based (ITN) polymers with various electron-withdrawing substituents and intrinsic quinoidal character were synthesized, characterized, and tested in organic photovoltaic (OPV) devices. The three investigated ITN cores contained either ester, imide, or nitrile functionalities and were each synthesized in only four linear steps. The relative electron-withdrawing strength of the three substituents on the ITN moiety was evaluated and correlated to the optical and electronic properties of ITN-based copolymers. The ester- and imide-containing p-type polymers reached device efficiencies as high as 3% in bulk heterojunction blends with phenyl C 61-butyric acid methyl ester (PC 61BM), while the significantly electron-deficient nitrile-functionalized polymer behaved as an n-type material with an efficiency of 0.3% in bilayer devices with poly(3-(4-n-octyl)phenylthiophene) (POPT). © 2012 American Chemical Society.
    Citation
    Douglas, J. D., Griffini, G., Holcombe, T. W., Young, E. P., Lee, O. P., Chen, M. S., & Fréchet, J. M. J. (2012). Functionalized Isothianaphthene Monomers That Promote Quinoidal Character in Donor–Acceptor Copolymers for Organic Photovoltaics. Macromolecules, 45(10), 4069–4074. doi:10.1021/ma300589k
    Sponsors
    This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences and Engineering Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231 and the Frechet "Various Donors" gift fund for the support of research in new materials. G.G. thanks Fondazione Banca del Monte di Lombardia, T.W.H. thanks the National Science Foundation, and M.S.C. thanks the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry for fellowships. The authors also thank Professors Robert Bergman and Peter Vollhardt for helpful discussions.
    Publisher
    American Chemical Society (ACS)
    Journal
    Macromolecules
    DOI
    10.1021/ma300589k
    ae974a485f413a2113503eed53cd6c53
    10.1021/ma300589k
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Science Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.