• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Kim, Youngdeuk
    Thu, Kyaw
    Bhatia, Hitasha Kaur
    Bhatia, Charanjit Singh
    Ng, K. C.
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Water Desalination and Reuse Research Center (WDRC)
    KAUST Grant Number
    R265-000-286-597
    Date
    2012-05
    Permanent link to this record
    http://hdl.handle.net/10754/562165
    
    Metadata
    Show full item record
    Abstract
    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter configuration has better thermal and economic performances over the conventional design. © 2012.
    Citation
    Kim, Y.-D., Thu, K., Bhatia, H. K., Bhatia, C. S., & Ng, K. C. (2012). Thermal analysis and performance optimization of a solar hot water plant with economic evaluation. Solar Energy, 86(5), 1378–1395. doi:10.1016/j.solener.2012.01.030
    Sponsors
    The authors gratefully acknowledge the financial support given by Grants (2008EWT-CERP002-032) from NRF, Singapore and (R265-000-286-597) from King Abdullah University of Science and Technology (KAUST).
    Publisher
    Elsevier BV
    Journal
    Solar Energy
    DOI
    10.1016/j.solener.2012.01.030
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.solener.2012.01.030
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.