Show simple item record

dc.contributor.authorKhan, Hadayat Ullah
dc.contributor.authorRoberts, Mark E.
dc.contributor.authorJohnson, Olasupo B.
dc.contributor.authorKnoll, Wolfgang
dc.contributor.authorBao, Zhenan
dc.date.accessioned2015-08-03T09:44:52Z
dc.date.available2015-08-03T09:44:52Z
dc.date.issued2012-03
dc.identifier.issn15661199
dc.identifier.doi10.1016/j.orgel.2011.12.013
dc.identifier.urihttp://hdl.handle.net/10754/562104
dc.description.abstractOrganic electronics are beginning to attract more interest for biosensor technology as they provide an amenable interface between biology and electronics. Stable biosensor based on electronic detection platform would represent a significant advancement in technology as costs and analysis time would decrease immensely. Organic materials provide a route toward that goal due to their compatibility with electronic applications and biological molecules. In this report, we detail the effects of experimental parameters, such as pH and concentration, toward the selective detection of DNA via surface-bound peptide nucleic acid (PNA) sequences on organic transistor biosensors. The OTFT biosensors are fabricated with thin-films of the organic semiconductor, 5,5′-bis-(7-dodecyl-9H-fluoren-2-yl)-2,2′-bithiophene (DDFTTF), in which they exhibit a stable mobility of 0.2 cm 2 V -1 s -1 in buffer solutions (phosphate-buffer saline, pH 7.4 or sodium acetate, pH 7). Device performance were optimized to minimize the deleterious effects of pH on gate-bias stress such that the sensitivity toward DNA detection can be improved. In titration experiments, the surface-bound PNA probes were saturated with 50 nM of complementary target DNA, which required a 10-fold increase in concentration of single-base mismatched target DNA to achieve a similar surface saturation. The binding constant of DNA on the surface-bound PNA probes was determined from the concentration-dependent response (titration measurements) of our organic transistor biosensors. © 2011 Elsevier B.V. All rights reserved.
dc.description.sponsorshipH.U.K. acknowledges the financial support from IRTG/1404 (funded by the DFG) and Max Planck Society (Germany). This project was funded by the National Science Foundation Materials Research Science and Engineering Center of Polymer and Macromolecular Assemblies (DMR0 213618), National Science foundation (ECCS0730710) and the Office of Naval Research (N000140810654). M.E.R. acknowledges partial support from the NASA GSRP fellowship; O.J. acknowledges partial support from a Hewlett Packard graduate fellowship. (Supplementary information is available online from Wiley InterScience or from the author).
dc.publisherElsevier BV
dc.subjectBioelectronics
dc.subjectOrganic transistor
dc.subjectOTFT biosensor
dc.subjectpH effects on DNA detection
dc.subjectPNA/DNA hybridization
dc.subjectTitration measurements
dc.titleThe effect of pH and DNA concentration on organic thin-film transistor biosensors
dc.typeArticle
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalOrganic Electronics
dc.contributor.institutionMaterial Science Group, Max-Planck-Institute for Polymer Research, Ackermannweg-10, D-55128 Mainz, Germany
dc.contributor.institutionDepartment of Chemical Engineering, Stanford University, 381 North South Mall, Stanford, CA 94305, United States
dc.contributor.institutionDepartment of Chemical and Biomolecular Engineering, Clemson University, 204 Earle Hall, Clemson, SC 29631, United States
dc.contributor.institutionAustrian Institute of Technology, GmbH, Donau-City-Str. 1, 1220 Vienna, Austria
kaust.personKhan, Hadayat Ullah


This item appears in the following Collection(s)

Show simple item record