Type
ArticleAuthors
Marondedze, Claudius
Thomas, Ludivine
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionBioscience Program
Core Labs
Date
2012-01Permanent link to this record
http://hdl.handle.net/10754/562044
Metadata
Show full item recordAbstract
Apple (Malus× domestica Borkh.) was used as a model to studying essential biological processes occurring in mature fruit hypanthium, commonly referred to as the fruit flesh or pulp, a highly active tissue where numerous metabolic processes such as carbohydrate metabolism and signal transduction occur. To understand the complex biological processes occurring in the hypanthium, a proteomics approach was used to analyze the proteome from freshly harvested ripe apple fruits. A total of 290 well-resolved spots were detected using two-dimensional gel electrophoresis (2-DE). Out of these, 216 proteins were identified representing 116 non-redundant proteins using matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and either the MASCOT or ProteinProspector engine for peptide mass fingerprinting (PMF) database searching. Identified proteins were classified into 13 major functional categories. Among these, the energy metabolism class was the most represented and included 50% of proteins homologous to Arabidopsis proteins that are involved in the response to biotic and abiotic stresses, suggesting a dual role for these proteins in addition to energy metabolism. We also identified dynein heavy chain in the hypanthium although this protein has been proposed as absent from angiosperms and thus suggest that the lack of dyneins in higher plants studied to date may not be a general characteristic to angiosperm genomic organisation. We therefore conclude that the detection and elucidation of the apple hypanthium proteome is an indispensable step towards the comprehension of fruit metabolism, the integration of genomic, proteomic and metabolomic data to agronomic trait information and thus fruit quality improvements. © 2011 Elsevier GmbH.Citation
Marondedze, C., & Thomas, L. A. (2012). Insights into fruit function from the proteome of the hypanthium. Journal of Plant Physiology, 169(1), 12–19. doi:10.1016/j.jplph.2011.10.001Sponsors
This work was supported by grants from the Agricultural Research Council and Technology for Human Resources for Industry Programme, South Africa. The authors wish to thank Prof. Christoph Gehring for critically revising the manuscript and the Department of Biotechnology, University of the Western Cape, South Africa for assistance with proteomics equipment used in the study.Publisher
Elsevier BVJournal
Journal of Plant PhysiologyPubMed ID
22050892ae974a485f413a2113503eed53cd6c53
10.1016/j.jplph.2011.10.001
Scopus Count
Related articles
- Apple hypanthium firmness: new insights from comparative proteomics.
- Authors: Marondedze C, Thomas LA
- Issue date: 2012 Sep
- Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.
- Authors: Buron-Moles G, Wisniewski M, Viñas I, Teixidó N, Usall J, Droby S, Torres R
- Issue date: 2015 Jan 30
- A proteomic investigation of apple fruit during ripening and in response to ethylene treatment.
- Authors: Zheng Q, Song J, Campbell-Palmer L, Thompson K, Li L, Walker B, Cui Y, Li X
- Issue date: 2013 Nov 20
- Proteomics research on the effects of applying selenium to apple leaves on photosynthesis.
- Authors: Ning CJ, Ding N, Wu GL, Meng HJ, Wang YN, Wang QH
- Issue date: 2013 Sep
- Proteomic analysis of the major soluble components in Annurca apple flesh.
- Authors: Guarino C, Arena S, De Simone L, D'Ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M
- Issue date: 2007 Feb