• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    On the formation and early evolution of soot in turbulent nonpremixed flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bisetti, Fabrizio cc
    Blanquart, Guillaume
    Müeller, Michael E.
    Pitsch, Heinz G.
    KAUST Department
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Reactive Flow Modeling Laboratory (RFML)
    Date
    2012-01
    Permanent link to this record
    http://hdl.handle.net/10754/562043
    
    Metadata
    Show full item record
    Abstract
    A Direct Numerical Simulation (DNS) of soot formation in an n-heptane/air turbulent nonpremixed flame has been performed to investigate unsteady strain effects on soot growth and transport. For the first time in a DNS of turbulent combustion, Polycyclic Aromatic Hydrocarbons (PAH) are included via a validated, reduced chemical mechanism. A novel statistical representation of soot aggregates based on the Hybrid Method of Moments is used [M.E. Mueller, G. Blanquart, H. Pitsch, Combust. Flame 156 (2009) 1143-1155], which allows for an accurate state-of-the-art description of soot number density, volume fraction, and morphology of the aggregates. In agreement with previous experimental studies in laminar flames, Damköhler number effects are found to be significant for PAH. Soot nucleation and growth from PAH are locally inhibited by high scalar dissipation rate, thus providing a possible explanation for the experimentally observed reduction of soot yields at increasing levels of mixing in turbulent sooting flames. Furthermore, our data indicate that soot growth models that rely on smaller hydrocarbon species such as acetylene as a proxy for large PAH molecules ignore or misrepresent the effects of turbulent mixing and hydrodynamic strain on soot formation due to differences in the species Damköhler number. Upon formation on the rich side of the flame, soot is displaced relative to curved mixture fraction iso-surfaces due to differential diffusion effects between soot and the gas-phase. Soot traveling towards the flame is oxidized, and aggregates displaced away from the flame grow primarily by condensation of PAH on the particle surface. In contrast to previous DNS studies based on simplified soot and chemistry models, surface reactions are found to contribute barely to the growth of soot, for nucleation and condensation processes occurring in the fuel stream are responsible for the most of soot mass generation. Furthermore, the morphology of the soot aggregates is found to depend on the location of soot in mixture fraction space. Aggregates having the largest primary particles populate the region closest to the location of peak soot growth. On the contrary, the aggregates with the largest number of primary particles are located much further into the fuel stream. © 2011 The Combustion Institute.
    Citation
    Bisetti, F., Blanquart, G., Mueller, M. E., & Pitsch, H. (2012). On the formation and early evolution of soot in turbulent nonpremixed flames. Combustion and Flame, 159(1), 317–335. doi:10.1016/j.combustflame.2011.05.021
    Sponsors
    The authors gratefully acknowledge funding from the Strategic Environmental Research and Development Program (SERDP) and the National Aeronautics and Space Administration (NASA). This research was supported in part by the National Science Foundation (NSF) through TeraGrid resources provided by the Texas Advanced Computing Center (TACC) under Grant No. TG-CTS090021. M.E.M. gratefully acknowledges support of the National Defense Science and Engineering Graduate (NDSEG) fellowship program. The authors would like to thank Dr. Pepiot-Desjardins for her help in reducing the chemical mechanism.
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2011.05.021
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2011.05.021
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.