Show simple item record

dc.contributor.authorPottmann, Helmut
dc.contributor.authorShi, Ling
dc.contributor.authorSkopenkov, Mikhail
dc.date.accessioned2015-08-03T09:43:23Z
dc.date.available2015-08-03T09:43:23Z
dc.date.issued2012-01
dc.identifier.issn01678396
dc.identifier.doi10.1016/j.cagd.2011.10.002
dc.identifier.urihttp://hdl.handle.net/10754/562040
dc.description.abstractMotivated by potential applications in architecture, we study Darboux cyclides. These algebraic surfaces of order ≤4 are a superset of Dupin cyclides and quadrics, and they carry up to six real families of circles. Revisiting the classical approach to these surfaces based on the spherical model of 3D Möbius geometry, we provide computational tools for the identification of circle families on a given cyclide and for the direct design of those. In particular, we show that certain triples of circle families may be arranged as so-called hexagonal webs, and we provide a complete classification of all possible hexagonal webs of circles on Darboux cyclides. © 2011 Elsevier B.V. All rights reserved.
dc.publisherElsevier BV
dc.relation.urlhttp://arxiv.org/abs/arXiv:1106.1354v1
dc.subjectArchitectural geometry
dc.subjectDarboux cyclide
dc.subjectGeometry of webs
dc.subjectMöbius geometry
dc.subjectWeb from circles
dc.titleDarboux cyclides and webs from circles
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentVisual Computing Center (VCC)
dc.contributor.departmentComputer Science Program
dc.identifier.journalComputer Aided Geometric Design
dc.contributor.institutionInstitute for Information Transmission Problems, Moscow, Russian Federation
dc.identifier.arxividarXiv:1106.1354
kaust.personPottmann, Helmut
kaust.personShi, Ling
kaust.personSkopenkov, Mikhail
dc.versionv1
dc.date.posted2011-06-07


This item appears in the following Collection(s)

Show simple item record