Show simple item record

dc.contributor.authorXie, Xing
dc.contributor.authorYe, Meng
dc.contributor.authorHu, Liangbing
dc.contributor.authorLiu, Nian
dc.contributor.authorMcDonough, James R.
dc.contributor.authorChen, Wei
dc.contributor.authorAlshareef, Husam N.
dc.contributor.authorCriddle, Craig S.
dc.contributor.authorCui, Yi
dc.date.accessioned2015-08-03T09:35:21Z
dc.date.available2015-08-03T09:35:21Z
dc.date.issued2012
dc.identifier.citationXie, X., Ye, M., Hu, L., Liu, N., McDonough, J. R., Chen, W., … Cui, Y. (2012). Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci., 5(1), 5265–5270. doi:10.1039/c1ee02122b
dc.identifier.issn17545692
dc.identifier.doi10.1039/c1ee02122b
dc.identifier.urihttp://hdl.handle.net/10754/561972
dc.description.abstractThe materials that are used to make electrodes and their internal structures significantly affect microbial fuel cell (MFC) performance. In this study, we describe a carbon nanotube (CNT)-sponge composite prepared by coating a sponge with CNTs. Compared to the CNT-coated textile electrodes evaluated in prior studies, CNT-sponge electrodes had lower internal resistance, greater stability, more tunable and uniform macroporous structure (pores up to 1 mm in diameter), and improved mechanical properties. The CNT-sponge composite also provided a three-dimensional scaffold that was favorable for microbial colonization and catalytic decoration. Using a batch-fed H-shaped MFC outfitted with CNT-sponge electrodes, an areal power density of 1.24 W m -2 was achieved when treating domestic wastewater. The maximum volumetric power density of a continuously fed plate-shaped MFC was 182 W m -3. To our knowledge, these are the highest values obtained to date for MFCs fed domestic wastewater: 2.5 times the previously reported maximum areal power density and 12 times the previously reported maximum volumetric power density. © 2011 The Royal Society of Chemistry.
dc.description.sponsorshipWe thank Karin North and Tracy Ingebrigtsen for experimental assistance. This work was partially supported by the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-11-001-12). JM acknowledges support from the National Defense Science and Engineering and National Science Foundation graduate research fellowships. XX acknowledge the support from the Stanford Graduate Fellowship.
dc.publisherRoyal Society of Chemistry (RSC)
dc.titleCarbon nanotube-coated macroporous sponge for microbial fuel cell electrodes
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalEnergy Environ. Sci.
dc.contributor.institutionDepartment of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, United States
dc.contributor.institutionDepartment of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States
dc.contributor.institutionDepartment of Chemistry, Stanford University, Stanford, CA 94305, United States
kaust.personAlshareef, Husam N.
kaust.personChen, Wei
kaust.grant.numberKUS-11-001-12


This item appears in the following Collection(s)

Show simple item record