Show simple item record

dc.contributor.authorGerbi, Stéphane
dc.contributor.authorSaid-Houari, Belkacem
dc.date.accessioned2015-08-03T09:34:30Z
dc.date.available2015-08-03T09:34:30Z
dc.date.issued2011-12
dc.identifier.citationGerbi, S., & Said-Houari, B. (2011). Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions. Nonlinear Analysis: Theory, Methods & Applications, 74(18), 7137–7150. doi:10.1016/j.na.2011.07.026
dc.identifier.issn0362546X
dc.identifier.doi10.1016/j.na.2011.07.026
dc.identifier.urihttp://hdl.handle.net/10754/561936
dc.description.abstractIn this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the KelvinVoigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained. © 2011 Elsevier Ltd. All rights reserved.
dc.publisherElsevier BV
dc.relation.urlhttp://arxiv.org/abs/arXiv:0811.2783v3
dc.subjectBlow up
dc.subjectDamped wave equations
dc.subjectDynamic boundary conditions
dc.subjectGlobal solutions
dc.subjectKelvinVoigt damping
dc.subjectStable and unstable set
dc.titleAsymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalNonlinear Analysis: Theory, Methods & Applications
dc.contributor.institutionUniversité de Savoie, LAMA, 73376 Le Bourget-du-Lac Cedex, France
dc.identifier.arxivid0811.2783
kaust.personSaid-Houari, Belkacem
dc.date.posted2008-11-17


This item appears in the following Collection(s)

Show simple item record