• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Hu, Liangbing
    Chen, Wei
    Xie, Xing
    Liu, Nian
    Yang, Yuan
    Wu, Hui
    Yao, Yan
    Pasta, Mauro
    Alshareef, Husam N. cc
    Cui, Yi cc
    KAUST Department
    Advanced Membranes and Porous Materials Research Center
    Functional Nanomaterials and Devices Research Group
    Material Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    KAUST Grant Number
    KUS-11-001-12
    Date
    2011-10-13
    Online Publication Date
    2011-10-13
    Print Publication Date
    2011-11-22
    Permanent link to this record
    http://hdl.handle.net/10754/561928
    
    Metadata
    Show full item record
    Abstract
    While MnO2 is a promising material for pseudocapacitor applications due to its high specific capacity and low cost, MnO2 electrodes suffer from their low electrical and ionic conductivities. In this article, we report a structure where MnO2 nanoflowers were conformally electrodeposited onto carbon nanotube (CNT)-enabled conductive textile fibers. Such nanostructures effectively decrease the ion diffusion and charge transport resistance in the electrode. For a given areal mass loading, the thickness of MnO2 on conductive textile fibers is much smaller than that on a flat metal substrate. Such a porous structure also allows a large mass loading, up to 8.3 mg/cm2, which leads to a high areal capacitance of 2.8 F/cm2 at a scan rate of 0.05 mV/s. Full cells were demonstrated, where the MnO2-CNT-textile was used as a positive electrode, reduced MnO2-CNT-textile as a negative electrode, and 0.5 M Na2SO4 in water as the electrolyte. The resulting pseudocapacitor shows promising results as a low-cost energy storage solution and an attractive wearable power. © 2011 American Chemical Society.
    Citation
    Hu, L., Chen, W., Xie, X., Liu, N., Yang, Y., Wu, H., … Cui, Y. (2011). Symmetrical MnO2–Carbon Nanotube–Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading. ACS Nano, 5(11), 8904–8913. doi:10.1021/nn203085j
    Sponsors
    We thank Dr. Judy Cha for her helpful discussion and assistance in some sample characterizations. W.C. thanks the support from a KAUST Graduate Fellowship. X.X. acknowledges the support from the Stanford Graduate Fellowship. Y.C. acknowledges the funding support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-11-001-12).
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Nano
    DOI
    10.1021/nn203085j
    ae974a485f413a2113503eed53cd6c53
    10.1021/nn203085j
    Scopus Count
    Collections
    Articles; Advanced Membranes and Porous Materials Research Center; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.