Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation
Type
ArticleKAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
Date
2011-11Permanent link to this record
http://hdl.handle.net/10754/561907
Metadata
Show full item recordAbstract
The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.Citation
Zhang, T., Li, W., & Croué, J.-P. (2011). Catalytic Ozonation of Oxalate with a Cerium Supported Palladium Oxide: An Efficient Degradation Not Relying on Hydroxyl Radical Oxidation. Environmental Science & Technology, 45(21), 9339–9346. doi:10.1021/es202209jPublisher
American Chemical Society (ACS)PubMed ID
21970593ae974a485f413a2113503eed53cd6c53
10.1021/es202209j
Scopus Count
Related articles
- Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon.
- Authors: Li L, Ye W, Zhang Q, Sun F, Lu P, Li X
- Issue date: 2009 Oct 15
- Enhanced mineralization of oxalate by highly active and Stable Ce(III)-Doped g-C(3)N(4) catalyzed ozonation.
- Authors: Xie Y, Peng S, Feng Y, Wu D
- Issue date: 2020 Jan
- Iron type catalysts for the ozonation of oxalic acid in water.
- Authors: Beltrán FJ, Rivas FJ, Montero-de-Espinosa R
- Issue date: 2005 Sep
- Sonolytic decomposition of aqueous bioxalate in the presence of ozone.
- Authors: Vecitis CD, Lesko T, Colussi AJ, Hoffmann MR
- Issue date: 2010 Apr 15
- Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.
- Authors: Xing S, Lu X, Liu J, Zhu L, Ma Z, Wu Y
- Issue date: 2016 Feb