Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse
Type
ArticleKAUST Department
Water Desalination and Reuse Research Center (WDRC)Biological and Environmental Sciences and Engineering (BESE) Division
Environmental Science and Engineering Program
Date
2011-10Permanent link to this record
http://hdl.handle.net/10754/561890
Metadata
Show full item recordAbstract
The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.Citation
Yangali-Quintanilla, V., Li, Z., Valladares, R., Li, Q., & Amy, G. (2011). Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 280(1-3), 160–166. doi:10.1016/j.desal.2011.06.066Sponsors
The authors acknowledge the financial support of King Abdullah University of Science and Technology, and GS E&C from South Korea, for partially funding this research. The authors express gratitude to Edward Beaudry of Hydration Technology Innovations, and Markus Busch (Dow-Filmtec) for kindly providing the FO and RO membrane samples, respectively.Publisher
Elsevier BVJournal
Desalinationae974a485f413a2113503eed53cd6c53
10.1016/j.desal.2011.06.066