• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Kaiyu
    Chung, Tai Shung Neal
    Amy, Gary L.
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    KAUST Grant Number
    SA-C0005/UK-C0002
    Date
    2011-04-22
    Online Publication Date
    2011-04-22
    Print Publication Date
    2012-03
    Permanent link to this record
    http://hdl.handle.net/10754/561758
    
    Metadata
    Show full item record
    Abstract
    A new scheme has been developed to fabricate high-performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p-Phenylenediamine and 1,3,5-trimesoylchloride were adopted as the monomers for the in-situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab-made polyethersulfone (PES)/sulfonated polysulfone (SPSf)-alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure-retarded osmosis mode. The PES/SPSf thin-film-composite (TFC)-FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC-FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers (AIChE).
    Citation
    Wang, K. Y., Chung, T.-S., & Amy, G. (2011). Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AIChE Journal, 58(3), 770–781. doi:10.1002/aic.12635
    Sponsors
    The authors thank financial support from King Abdullah University of Science and Technology (KAUST) by Award No SA-C0005/UK-C0002, and National University of Singapore (NUS) for funding this research project with the grant number of and R-279-000-265-598. Special thanks are due to Dr. Youchang Xiao, Dr. Jincai Su, Mr. Shipeng Sun, and Ms. Rui Chin Ong for their valuable suggestions.
    Publisher
    Wiley
    Journal
    AIChE Journal
    DOI
    10.1002/aic.12635
    ae974a485f413a2113503eed53cd6c53
    10.1002/aic.12635
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.