Automotive airbag inflator analysis using the measured properties of modern propellants
Type
ArticleKAUST Department
Clean Combustion Research CenterCombustion and Laser Diagnostics Laboratory
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2011-04Permanent link to this record
http://hdl.handle.net/10754/561740
Metadata
Show full item recordAbstract
An airbag is composed of a housing assembly, door assembly, cushion assembly, and an inflator. The inflator is an essential part that generates gas for the airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In the present study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of the inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed, and the results were compared with the tank test data. The similarity of the pressure curve and closed bomb calculation show that the modeled results are well correlated with the experimental data. © 2011 Elsevier Ltd All rights reserved.Citation
Seo, Y.-D., Chung, S. H., & Yoh, J. J. (2011). Automotive airbag inflator analysis using the measured properties of modern propellants. Fuel, 90(4), 1395–1401. doi:10.1016/j.fuel.2010.12.042Sponsors
This work was supported by Hyundai Mobis Grant (0591-20080027) through BK21 Office and IAAT at Seoul National University.Publisher
Elsevier BVJournal
Fuelae974a485f413a2113503eed53cd6c53
10.1016/j.fuel.2010.12.042