Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation
dc.contributor.author | Chen, Hao | |
dc.contributor.author | Xiong, Liming | |
dc.date.accessioned | 2015-08-03T09:02:35Z | |
dc.date.available | 2015-08-03T09:02:35Z | |
dc.date.issued | 2014-10-28 | |
dc.identifier.citation | Chen, H., & Xiong, L. (2011). Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation. Plant Signaling & Behavior, 6(1), 123–125. doi:10.4161/psb.6.1.14231 | |
dc.identifier.issn | 15592316 | |
dc.identifier.pmid | 21301222 | |
dc.identifier.doi | 10.4161/psb.6.1.14231 | |
dc.identifier.uri | http://hdl.handle.net/10754/561699 | |
dc.description.abstract | Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience. | |
dc.publisher | Informa UK Limited | |
dc.subject | Hypocotyl | |
dc.subject | Lateral root | |
dc.subject | Light signaling | |
dc.subject | PAP | |
dc.subject | RNA silencing | |
dc.subject | XRN4 | |
dc.title | Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation | |
dc.type | Article | |
dc.contributor.department | Biological and Environmental Science and Engineering (BESE) Division | |
dc.contributor.department | Bioscience Program | |
dc.contributor.department | Center for Desert Agriculture | |
dc.contributor.department | Plant Science | |
dc.contributor.department | Plant Stress Genomics Research Lab | |
dc.identifier.journal | Plant Signaling & Behavior | |
dc.contributor.institution | Donald Danforth Plant Science Center, St. Louis, MO, United States | |
kaust.person | Xiong, Liming | |
dc.date.published-online | 2014-10-28 | |
dc.date.published-print | 2011-01 |
This item appears in the following Collection(s)
-
Articles
-
Biological and Environmental Science and Engineering (BESE) Division
For more information visit: https://bese.kaust.edu.sa/ -
Bioscience Program
For more information visit: https://bese.kaust.edu.sa/study/Pages/Bioscience.aspx -
Center for Desert Agriculture