Show simple item record

dc.contributor.authorWondmagegn, Wudyalew T.
dc.contributor.authorSatyala, Nikhil T.
dc.contributor.authorPieper, Ron J.
dc.contributor.authorQuevedo-López, Manuel Angel Quevedo
dc.contributor.authorGowrisanker, Srinivas
dc.contributor.authorAlshareef, Husam N.
dc.contributor.authorStiegler, Harvey J.
dc.contributor.authorGnade, Bruce E.
dc.date.accessioned2015-08-03T09:00:44Z
dc.date.available2015-08-03T09:00:44Z
dc.date.issued2010-09-24
dc.identifier.issn15698025
dc.identifier.doi10.1007/s10825-010-0311-1
dc.identifier.urihttp://hdl.handle.net/10754/561627
dc.description.abstractThe contact resistance of field effect transistors based on pentacene and parylene has been investigated by experimental and numerical analysis. The device simulation was performed using finite element two-dimensional drift-diffusion simulation taking into account field-dependent mobility, interface/bulk trap states and fixed charge density at the organic/insulator interface. The width-normalized contact resistance extracted from simulation which included an interface dipole layer between the gold source/drain electrodes and pentacene was 91 kΩcm. However, contact resistance extracted from the simulation, without consideration of interface dipole was 52.4 kΩcm, which is about half of the experimentally extracted 108 kΩcm. This indicates that interface dipoles are critical effects which degrade performances of organic field effect transistors by increasing the contact resistance. Using numerical calculations and circuit simulations, we have predicted a 1 MHz switching frequency for a 1 μm channel length transistor without dipole interface between gold and pentacene. The transistor with dipole interface is predicted, via the same methods, to exhibit an operating frequency of less than 0.5 MHz. © 2010 Springer Science+Business Media LLC.
dc.description.sponsorshipWe gratefully acknowledge the Department of Defense for supporting this work (Army Research Office Contract W911NF-07-2-0059).
dc.publisherSpringer Nature
dc.subjectContact resistance
dc.subjectField effect mobility
dc.subjectInterface dipole
dc.subjectOrganic thinfilm transistor
dc.subjectPentacene
dc.subjectPoole-Frenkel mechanism
dc.subjectSwitching speed
dc.titleImpact of semiconductor/metal interfaces on contact resistance and operating speed of organic thin film transistors
dc.typeArticle
dc.contributor.departmentMaterials Science and Engineering Program
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentFunctional Nanomaterials and Devices Research Group
dc.identifier.journalJournal of Computational Electronics
dc.contributor.institutionDepartment of Electrical Engineering, University of Texas at Tyler, Tyler, TX 75799, United States
dc.contributor.institutionDepartment of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080-3021, United States
kaust.personAlshareef, Husam N.


This item appears in the following Collection(s)

Show simple item record