• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Anonymous publication of sensitive transactional data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Ghinita, Gabriel
    Kalnis, Panos cc
    Tao, Yufei
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Computer Science Program
    Date
    2011-02
    Permanent link to this record
    http://hdl.handle.net/10754/561590
    
    Metadata
    Show full item record
    Abstract
    Existing research on privacy-preserving data publishing focuses on relational data: in this context, the objective is to enforce privacy-preserving paradigms, such as k-anonymity and ℓ-diversity, while minimizing the information loss incurred in the anonymizing process (i.e., maximize data utility). Existing techniques work well for fixed-schema data, with low dimensionality. Nevertheless, certain applications require privacy-preserving publishing of transactional data (or basket data), which involve hundreds or even thousands of dimensions, rendering existing methods unusable. We propose two categories of novel anonymization methods for sparse high-dimensional data. The first category is based on approximate nearest-neighbor (NN) search in high-dimensional spaces, which is efficiently performed through locality-sensitive hashing (LSH). In the second category, we propose two data transformations that capture the correlation in the underlying data: 1) reduction to a band matrix and 2) Gray encoding-based sorting. These representations facilitate the formation of anonymized groups with low information loss, through an efficient linear-time heuristic. We show experimentally, using real-life data sets, that all our methods clearly outperform existing state of the art. Among the proposed techniques, NN-search yields superior data utility compared to the band matrix transformation, but incurs higher computational overhead. The data transformation based on Gray code sorting performs best in terms of both data utility and execution time. © 2006 IEEE.
    Citation
    Ghinita, G., Kalnis, P., & Yufei Tao. (2011). Anonymous Publication of Sensitive Transactional Data. IEEE Transactions on Knowledge and Data Engineering, 23(2), 161–174. doi:10.1109/tkde.2010.101
    Sponsors
    This paper is an extended version of [1]. The research of Yufei Tao was supported by grants GRF 1202/06, 4161/07, 4173/08, and 4169/09 from the RGC of HKSAR, and a grant with project code 2050395 from CUHK.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    IEEE Transactions on Knowledge and Data Engineering
    DOI
    10.1109/TKDE.2010.101
    ae974a485f413a2113503eed53cd6c53
    10.1109/TKDE.2010.101
    Scopus Count
    Collections
    Articles; Computer Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.