• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Sensors Lab
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Sensors Lab
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Omran, Hesham (4)
    Salama, Khaled N. (4)Buttner, Ulrich (2)Sapsanis, Christos (2)Alshareef, Sarah (1)View MoreDepartmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (4)
    Electrical Engineering Program (4)
    Sensors Lab (4)Physical Sciences and Engineering (PSE) Division (2)Advanced Membranes and Porous Materials Research Center (1)View MoreJournal2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (1)IEEE Electron Device Letters (1)IEEE Transactions on Nanotechnology (1)Sensors (1)PublisherInstitute of Electrical and Electronics Engineers (IEEE) (3)MDPI AG (1)Subjectcapacitive sensors (1)Crossbar (1)Digital Circuits (1)gas sensor test setup (1)humidity sensors (1)View MoreTypeArticle (3)Conference Paper (1)Year (Issue Date)
    2015 (4)
    Item AvailabilityOpen Access (3)Metadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-4 of 4

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 4CSV
    • 4RefMan
    • 4EndNote
    • 4BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa (IEEE Electron Device Letters, Institute of Electrical and Electronics Engineers (IEEE), 2015-12-04) [Article]
    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.
    Thumbnail

    Capacitive immunosensor for C-reactive protein quantification

    Sapsanis, Christos; Sivashankar, Shilpa; Omran, Hesham; Buttner, Ulrich; Salama, Khaled N. (2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), Institute of Electrical and Electronics Engineers (IEEE), 2015-10-01) [Conference Paper]
    We report an agglutination-based immunosensor for the quantification of C-reactive protein (CRP). The developed immunoassay sensor requires approximately 15 minutes of assay time per sample and provides a sensitivity of 0.5 mg/L. We have measured the capacitance of interdigitated electrodes (IDEs) and quantified the concentration of added analyte. The proposed method is a label free detection method and hence provides rapid measurement preferable in diagnostics. We have so far been able to quantify the concentration to as low as 0.5 mg/L and as high as 10 mg/L. By quantifying CRP in serum, we can assess whether patients are prone to cardiac diseases and monitor the risk associated with such diseases. The sensor is a simple low cost structure and it can be a promising device for rapid and sensitive detection of disease markers at the point-of-care stage.
    Thumbnail

    Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study

    Sapsanis, Christos; Omran, Hesham; Chernikova, Valeriya; Shekhah, Osama; Belmabkhout, Youssef; Buttner, Ulrich; Eddaoudi, Mohamed; Salama, Khaled N. (Sensors, MDPI AG, 2015-07-24) [Article]
    A prototypical metal-organic framework (MOF), a 2D periodic porous structure based on the assembly of copper ions and benzene dicarboxylate (bdc) ligands (Cu(bdc)·xH2O), was grown successfully as a thin film on interdigitated electrodes (IDEs). IDEs have been used for achieving planar CMOS-compatible low-cost capacitive sensing structures for the detection of humidity and volatile organic compounds (VOCs). Accordingly, the resultant IDEs coated with the Cu(bdc)·xH2O thin film was evaluated, for the first time, as a capacitive sensor for gas sensing applications. A fully automated setup, using LabVIEW interfaces to experiment conduction and data acquisition, was developed in order to measure the associated gas sensing performance.
    Thumbnail

    Compensated readout for high-density MOS-gated memristor crossbar array

    Zidan, Mohammed A.; Omran, Hesham; Salem, Ahmed Sultan; Fahmy, Hossam Aly Hassan; Salama, Khaled N. (IEEE Transactions on Nanotechnology, Institute of Electrical and Electronics Engineers (IEEE), 2015-01) [Article]
    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.