Recent Submissions

  • In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters

    Othoum, Ghofran K.; Bougouffa, Salim; Mohamad Razali, Rozaimi; Bokhari, Ameerah; Alamoudi, Soha; Antunes, André; Gao, Xin; Hoehndorf, Robert; Arold, Stefan T.; Gojobori, Takashi; Hirt, Heribert; Mijakovic, Ivan; Bajic, Vladimir B.; Lafi, Feras Fawzi; Essack, Magbubah (BMC Genomics, Springer Nature, 2018-05-22) [Article]
    BackgroundThe increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions.ResultsWe report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species.ConclusionsB. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.
  • Nanosheets of Nonlayered Aluminum Metal-Organic Frameworks through a Surfactant-Assisted Method

    Pustovarenko, Alexey; Goesten, Maarten G.; Sachdeva, Sumit; Shan, Meixia; Amghouz, Zakariae; Belmabkhout, Youssef; Dikhtiarenko, Alla; Rodenas, Tania; Keskin, Damla; Voets, Ilja K.; Weckhuysen, Bert M.; Eddaoudi, Mohamed; de Smet, Louis C. P. M.; Sudhölter, Ernst J. R.; Kapteijn, Freek; Seoane, Beatriz; Gascon, Jorge (Advanced Materials, Wiley, 2018-05-18) [Article]
    During the last decade, the synthesis and application of metal-organic framework (MOF) nanosheets has received growing interest, showing unique performances for different technological applications. Despite the potential of this type of nanolamellar materials, the synthetic routes developed so far are restricted to MOFs possessing layered structures, limiting further development in this field. Here, a bottom-up surfactant-assisted synthetic approach is presented for the fabrication of nanosheets of various nonlayered MOFs, broadening the scope of MOF nanosheets application. Surfactant-assisted preorganization of the metallic precursor prior to MOF synthesis enables the manufacture of nonlayered Al-containing MOF lamellae. These MOF nanosheets are shown to exhibit a superior performance over other crystal morphologies for both chemical sensing and gas separation. As revealed by electron microscopy and diffraction, this superior performance arises from the shorter diffusion pathway in the MOF nanosheets, whose 1D channels are oriented along the shortest particle dimension.
  • Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    Abdellah, Mohamed H.; Perez Manriquez, Liliana; Puspasari, Tiara; Scholes, Colin A.; Kentish, Sandra E.; Peinemann, Klaus-Viktor (Advanced Sustainable Systems, Wiley, 2018-05-18) [Article]
    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent-induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant-derived polyphenol, and terephthaloyl chloride. Alpha-pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X-ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut-off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.
  • CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    Chakrabarty, Tina; Neelakanda, Pradeep; Peinemann, Klaus-Viktor (Journal of Materials Science Research, Canadian Center of Science and Education, 2018-05-17) [Article]
    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.
  • Isolated Fe sites in Metal Organic Framework catalyze the direct conversion of methane to methanol

    Osadchii, Dmitrii; Olivos Suarez, Alma Itzel; Szécsényi, Ágnes; Li, Guanna; Nasalevich, Maxim A.; Dugulan, A Iulian; Serra-Crespo, Pablo; Hensen, Emiel J. M.; Veber, Sergey L.; Fedin, Matvey V.; Sankar, Gopinathan; Pidko, Evgeny A; Gascon, Jorge (ACS Catalysis, American Chemical Society (ACS), 2018-05-10) [Article]
    Hybrid materials bearing organic and inorganic motives have been extensively discussed as playgrounds for the implementation of atomically resolved inorganic sites within a confined environment, with an exciting similarity to enzymes. Here, we present the successful design of a site-isolated mixed-metal Metal Organic Framework that mimics the reactivity of soluble methane monooxygenase enzyme reactivity and demonstrates the potential of this strategy to overcome current challenges in selective methane oxidation. We describe the synthesis and characterisation of an Fe-containing MOF that comprises the desired antiferromagnetically cou-pled high spin species in a coordination environment closely resembling that of the enzyme. An electrochemi-cal synthesis method is used to build the microporous MOF matrix while integrating, with an exquisite con-trol, the atomically dispersed Fe active sites in the crystalline scaffold. The model mimics the catalytic C-H activation behaviour of the enzyme to produce methanol, and shows that the key to this reactivity is the for-mation of isolated oxo-bridged Fe units.
  • Thin porphyrin composite membranes with enhanced organic solvent transport

    Phuoc, Duong; Anjum, Dalaver H.; Peinemann, Klaus-Viktor; Nunes, Suzana Pereira (Journal of Membrane Science, Elsevier BV, 2018-05-01) [Article]
    Extending the stability of polymeric membranes in organic solvents is important for applications in chemical and pharmaceutical industry. Thin-film composite membranes with enhanced solvent permeance are proposed, using porphyrin as a building block. Hybrid polyamide films are formed by interfacial polymerization of 5,10,15,20-(tetra-4-aminophenyl)porphyrin/m-phenylene diamine (MPD) mixtures with trimesoyl chloride. Porphyrin is a non-planar molecule, containing a heterocyclic tetrapyrrole unit. Its incorporation into a polyamide film leads to higher free volume than that of a standard polyamide film. Polyamide films derived from porphyrin and MPD amines with a fixed total amine concentration of 1wt% and various porphyrin/MPD ratios were fabricated and characterized. The porphyrin/MPD polyamide film was complexed with Cu(II), due to the binding capacity of porphyrin to metal ions. By coupling scanning transmission electron microscopy (STEM) with electron energy-loss spectroscopy (EELS), Cu mapping was obtained, revealing the distribution of porphyrin in the interfacial polymerized layer. By using porphyrin as amine-functionalized monomer a membrane with thin selective skin and enhanced solvent transport is obtained, with good dye selectivity in the nanofiltration range. For instance, an ultra-fast hexane permeance, 40-fold increased, was confirmed when using 0.5/0.5 porphyrin/MPD mixtures, instead of only MPD as amine monomer. A rejection of 94.2% Brilliant Blue R (826g/mol) in methanol was measured.
  • Theoretical Kinetic Study of the Unimolecular and H-Assisted Keto-Enol Tautomerism Propen-2-ol ↔Acetone. Pressure Effects and Implications in the Pyrolysis and Oxidation of tert- And 2-Butanol

    Grajales Gonzalez, Edwing Javier (2018-05) [Thesis]
    Advisor: Sarathy, Mani
    Committee members: Peinemann, Klaus-Viktor; Cavallo, Luigi
    The need for renewable and cleaner sources of energy has made biofuels an interesting alternative to fossil fuels, especially in the case of butanol isomers, with their favorable blend properties and low hygroscopicity. Although C4 alcohols are prospective fuels, some key reactions governing their pyrolysis and combustion have not been adequately studied, leading to incomplete kinetic models. Butanol reactions kinetics is poorly understood. Specifically, the unimolecular and H-assisted tautomerism of propen-2-ol to acetone, which are included in butanol combustion kinetic models, are assigned rate parameters based on the analogous unimolecular tautomerism vinyl alcohol ↔ acetaldehyde and H addition to the double bound of iso-butene, respectively. In an attempt to update current kinetic models for tert- and 2-butanol, a theoretical kinetic study of the unimolecular and H-assisted tautomerism, i-C3H5OH⟺CH3COCH3 and i-C3H5OH+Ḣ⟺CH3COCH3+Ḣ, was carried out by means of CCSD(T,FULL)/aug-cc-pVTZ//CCSD(T)/6-31+G(d,p) and CCSD(T)/aug-cc-pVTZ//M062X/cc-pVTZ ab initio calculations, respectively. For H-assisted tautomerism, the reaction takes place in two consecutive steps: i-C3H5OH+Ḣ⟺CH3ĊOHCH3 and CH3ĊOHCH3⟺CH3COCH3+Ḣ. Multistructural torsional anharmonicity and variational transition state theory were considered in a wide temperature and pressure range (200 K – 3000 K, 0.1 kPa – 108 kPa). It was observed that decreasing pressure leads to a decrease in rate constants, describing the expected falloff behavior for both isomerizations. Results for unimolecular tautomerism differ from vinyl alcohol ↔ acetaldehyde analogue reactions, which shows lower rate constant values. Tunneling turned out to be important, especially at low temperatures. Accordingly, pyrolysis simulations in a batch reactor for tert- and 2-butanol with computed unimolecular rate constants showed important differences in comparison with previous results, such as larger acetone yield and quicker propen-2-ol consumption. In the combustion and pyrolysis batch reactor simulations, using all the rate constants computed in this work, H-assisted reactions are limited because H radicals become abundant once the propen-2-ol has been consumed by other reactions, such as the non-catalyzed tautomerism i-C3H5OH⟺CH3COCH3, which becomes one of the main source of acetone. The intermediate radical (CH3ĊOHCH3) is formed exclusively from tert-butanol, with its concentration in 2-butanol oxidation being smaller because the secondary alcohol is unable to produce the radical directly. In all cases, the intermediate is converted effectively to acetone.
  • Versatile High-Performance Regenerated Cellulose Membranes Prepared using Trimethylsilyl Cellulose as a Precursor

    Puspasari, Tiara (2018-05) [Dissertation]
    Advisor: Peinemann, Klaus-Viktor
    Committee members: Han, Yu; Leiknes, TorOve; Kentish, Sandra E.
    Cellulose has emerged as an indispensable membrane material due to its abundant availability, low cost, fascinating physiochemical properties and environment benignancy. However, it is believed that the potential of this polymer is not fully explored yet due to its insolubility in the common organic solvents, encouraging the use of derivatization-regeneration method as a viable alternative to the direct dissolution in exotic or reactive solvents. In this work, we use trimethylsilyl cellulose (TMSC), a highly soluble cellulose derivative, as a precursor for the fabrication of cellulose thin film composite membranes. TMSC is an attractive precursor to assemble thin cellulose films with good deposition behavior and film morphology; cumbersome solvents used in the one step cellulose processing are avoided. This derivative is prepared from cellulose by the known silylation reaction. The complete transformation of TMSC back into cellulose after the membrane formation is carried out by vapor-phase acid treatment, which is simple, scalable and reproducible. This process along with the initial TMSC concentration determines the membrane sieving characteristics. Unlike the typical regenerated cellulose membranes with meso- or macropores, membranes regenerated from TMSC display micropores suitable for the selective separation of nanomolecules in aqueous and organic solvent nanofiltration. The membranes introduced in this thesis represent the first polymeric membranes ever reported for highly selective separation of similarly sized small organic molecules based on charge and size differences with outstanding fluxes. Owing to its strong hydrophilic and amorphous character, the membranes also demonstrate excellent air-dehumidification performance as compared to previously reported thin film composite membranes. Moreover, the use of TMSC enables the creation of the previously unfeasible cellulose–polydimethylsiloxane (PDMS) and cellulose–polyethyleneimine (PEI) blend membranes with a good compatibility. The cellulose–PDMS membranes demonstrate attractive performance in ethanol-water pervaporation as compared to the commercial PDMS membrane, and allow nanofiltration of a wide range of solvents with different polarity. The cellulose-PEI membranes exhibit anomalous performance improvement in nanofiltration as compared to the corresponding pure membranes. This study has opened up many great opportunities for cellulose to continuously contribute to sustainable and economical membrane processes.
  • Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    Wezendonk, Tim A.; Sun, Xiaohui; Dugulan, A. Iulian; van Hoof, Arno J.F.; Hensen, Emiel J.M.; Kapteijn, Freek; Gascon, Jorge (Journal of Catalysis, Elsevier BV, 2018-04-19) [Article]
    Iron carbides are unmistakably associated with the active phase for Fischer-Tropsch synthesis (FTS). The formation of these carbides is highly dependent on the catalyst formulation, the activation method and the operational conditions. Because of this highly dynamic behavior, studies on active phase performance often lack the direct correlation between catalyst performance and iron carbide phase. For the above reasons, an extensive in situ Mössbauer spectroscopy study on highly dispersed Fe on carbon catalysts (Fe@C) produced through pyrolysis of a Metal Organic Framework was coupled to their FTS performance testing. The preparation of Fe@C catalysts via this MOF mediated synthesis allows control over the active phase formation and therefore provides an ideal model system to study the performance of different iron carbides. Reduction of fresh Fe@C followed by low-temperature Fischer-Tropsch (LTFT) conditions resulted in the formation of the ε′-Fe2.2C, whereas carburization of the fresh catalysts under high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM) characterization confirmed that the iron nanoparticle dispersion was preserved. The weight normalized activities (FTY) of χ-Fe5C2 and ε′-Fe2.2C are virtually identical, whilst it is found that ε′-Fe2.2C is a better hydrogenation catalyst than χ-Fe5C2. The absence of differences under subsequent HTFT experiments, where χ-Fe5C2 is the dominating phase, is a strong indication that the iron carbide phase is responsible for the differences in selectivity.
  • Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks

    Abdul Jameel, Abdul Gani; Oudenhoven, Vincent Van; Emwas, Abdul-Hamid M.; Sarathy, Mani (Energy & Fuels, American Chemical Society (ACS), 2018-04-17) [Article]
    Machine learning algorithms are attracting significant interest for predicting complex chemical phenomenon. In this work, a model to predict research octane number (RON) and motor octane number (MON) of pure hydrocarbons, hydrocarbon-ethanol blends and gasoline-ethanol blends has been developed using artificial neural networks (ANN) and molecular parameters from 1H nuclear Magnetic Resonance (NMR) spectroscopy. RON and MON of 128 pure hydrocarbons, 123 hydrocarbon-ethanol blends of known composition and 30 FACE (fuels for advanced combustion engines) gasoline-ethanol blends were utilized as a dataset to develop the ANN model. The effect of weight % of seven functional groups including paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic -CH=CH2 groups, naphthenic CH-CH2 groups, aromatic C-CH groups and ethanolic OH groups on RON and MON was studied. The effect of branching (i.e., methyl substitution), denoted by a parameter termed as branching index (BI), and molecular weight (MW) were included as inputs along with the seven functional groups to predict RON and MON. The topology of the developed ANN models for RON (9-540-314-1) and MON (9-340-603-1) have two hidden layers and a large number of nodes, and was validated against experimentally measured RON and MON of pure hydrocarbons, hydrocarbon-ethanol and gasoline-ethanol blends; a good correlation (R2=0.99) between the predicted and the experimental data was obtained. The average error of prediction for both RON and MON was found to be 1.2 which is close to the range of experimental uncertainty. This shows that the functional groups in a molecule or fuel can be used to predict its ON, and the complex relationship between them can be captured by tools like ANN.
  • Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge (ACS Applied Materials & Interfaces, American Chemical Society (ACS), 2018-04-11) [Article]
    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.
  • High Dehumidification Performance of Amorphous Cellulose Composite Membranes prepared from Trimethylsilyl Cellulose

    Puspasari, Tiara; Akhtar, Faheem Hassan; Ogieglo, Wojciech; Alharbi, Ohoud; Peinemann, Klaus-Viktor (Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), 2018-04-11) [Article]
    Cellulose is widely regarded as an environmentally friendly, natural and low cost material which can significantly contribute the sustainable economic growth. In this study, cellulose composite membranes were prepared via regeneration of trimethylsilyl cellulose (TMSC), an easily synthesized cellulose derivative. The amorphous hydrophilic feature of the regenerated cellulose enabled fast permeation of water vapour. The pore-free cellulose layer thickness was adjustable by the initial TMSC concentration and acted as an efficient gas barrier. As a result, a 5,000 GPU water vapour transmission rate (WVTR) at the highest ideal selectivity of 1.1 x 106 was achieved by the membranes spin coated from a 7% (w/w) TMSC solution. The membranes maintained a 4,000 GPU WVTR with selectivity of 1.1 x 104 in the mixed-gas experiments, surpassing the performances of the previously reported composite membranes. This study provides a simple way to not only produce high performance membranes but also to advance cellulose as a low-cost and sustainable membrane material for dehumidification applications.
  • Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration

    Gadwal, Ikhlas; Sheng, Guan; Thankamony, Roshni Lilly; Liu, Yang; Li, Huifang; Lai, Zhiping (ACS Applied Materials & Interfaces, American Chemical Society (ACS), 2018-04-06) [Article]
    We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.
  • Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

    Jaasim, Mohammed; Elhagrasy, Ayman; Sarathy, Mani; Chung, Suk-Ho; Im, Hong G. (SAE Technical Paper Series, SAE International, 2018-04-04) [Conference Paper]
    Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE™, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane. The emphasis was on the assessment of two common spray breakup models, namely the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) and linearized instability sheet atomization (LISA) models, in terms of their influence on auto-ignition predictions. Two spray models resulted in different local mixing, and their influence in the prediction of auto-ignition was investigated. The relative importance of physical ignition delay, characterized by spray evaporation and mixing processes, in the overall ignition behavior for the two different fuels were examined. The results provided an improved understanding of the essential contribution of physical and chemical processes that are critical in describing the IQT auto-ignition event at different pressure and temperature conditions, and allowed a systematic way to distinguish between the physical and chemical ignition delay times.
  • Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

    Mohan, Balaji; Jaasim, Mohammed; Ahmed, Ahfaz; Hernandez Perez, Francisco; Sim, Jaeheon; Roberts, William L.; Sarathy, Mani; Im, Hong G. (SAE Technical Paper Series, SAE International, 2018-04-03) [Conference Paper]
    Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.
  • Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    Sarathy, Mani; Atef, Nour; Alfazazi, Adamu; Badra, Jihad; Zhang, Yu; Tzanetakis, Tom; Pei, Yuanjiang (SAE Technical Paper Series, SAE International, 2018-04-03) [Conference Paper]
    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
  • An Experimental and Numerical Study of N-Dodecane/Butanol Blends for Compression Ignition Engines

    Wakale, Anil Bhaurao; Mohamed, Samah; Naser, Nimal; Jaasim, Mohammed; Banerjee, Raja; Im, Hong G.; Sarathy, Mani (SAE Technical Paper Series, SAE International, 2018-04-03) [Conference Paper]
    Alcohols are potential blending agents for diesel that can be effectively used in compression ignition engines. This work investigates the use of n-butanol as a blending component for diesel fuel using experiments and simulations. Dodecane was selected as a surrogate for diesel fuel and various concentrations of n-butanol were added to study ignition characteristics. Ignition delay times for different n-butanol/dodecane blends were measured using the ignition quality tester at KAUST (KR-IQT). The experiments were conducted at pressure of 21 and 18 bar, temperature ranging from 703-843 K and global equivalence ratio of 0.85. A skeletal mechanism for n-dodecane and n-butanol blends with 203 species was developed for numerical simulations. The mechanism was developed by combining n-dodecane skeletal mechanism containing 106 species and a detailed mechanism for all the butanol isomers. The new mixture mechanism was validated for various pressure, temperature and equivalence ratio using a 0-D homogeneous reactor model from CHEMKIN for pure base fuels (n-dodecane and butanol). Computational fluid dynamics (CFD) code, CONVERGE was used to further validate the new mechanism. The new mechanism was able to reproduce the experimental results from IQT at different pressure and temperature conditions.
  • Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    Waqas, Muhammad Umer; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt (SAE Technical Paper Series, SAE International, 2018-04-03) [Conference Paper]
    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.
  • Autoignition of isooctane beyond RON and MON conditions

    Masurier, Jean-Baptiste; Waqas, Muhammad; Sarathy, Mani; Johansson, Bengt (SAE Technical Paper Series, SAE International, 2018-04-03) [Conference Paper]
    The present study experimentally examines the low temperature autoignition area of isooctane within the in-cylinder pressure - in-cylinder temperature map. Experiments were run with the help of a CFR engine. The boundaries of this engine were extended so that experiments could be performed outside the domain delimited by RON and MON traces. Since HCCI combustion is governed by kinetics, the rotation speed for all the experiments was set at 600 rpm to allow time for low temperature heat release (LTHR). All the other parameters (intake pressure, intake temperature, compression ratio and equivalence ratio), were scanned, such as the occurrence of isooctane combustion. The principal results showed that LTHR for isooctane occurs effortlessly under high intake pressure (1.3 bar) and low intake temperature (25 °C). Increasing the intake temperature leads to the loss of the LTHR, and therefore to a smaller domain on the pressure-temperature trace. In such a case, the LTHR domain is restricted from 20 to 50 bar in pressure and from 600 to 850 K in temperature. By slightly decreasing the intake pressure, the LTHR domain remains unchanged, but the LTHR tends to disappear, and finally, at 1.0 bar, the LTHR domain ceases to exist. When the equivalence ratio is moved from 0.3 to 0.4, the LTHR domain is delimited in the same range of pressure and temperature, but the start of combustion occurs slightly earlier for the same pressure-temperature trace. Similar conclusions were drawn regarding the variation of both intake pressure and temperature, except that few LTHR points were observed under 1.0 bar intake.
  • 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    Sarathy, Mani; Shankar, Vijai; Tripathi, Rupali; Pitsch, Heinz; Sarathy, Mani (Fuel, Elsevier BV, 2018-04-02) [Article]
    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol, resulting in better blending octane numbers. This work explores and provides a chemically sound explanation for the potential of 2-MF as an octane enhancer.

View more