• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAlouini, Mohamed-Slim (1)
    Benkhelifa, Fatma (1)
    Rezki, Zouheir (1)
    Tall, Abdoulaye (1)
    Department
    Communication Theory Lab (1)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (1)
    Electrical Engineering Program (1)JournalIEEE Transactions on Communications (1)PublisherInstitute of Electrical and Electronics Engineers (IEEE) (1)Subject
    Channel estimation (1)
    Channel state information at the receiver (CSI-R) (1)
    Channel state information at the transmitter (CSI-T) (1)
    Ergodic capacity (1)Low signal-to-noise ratio (SNR) (1)View MoreTypeArticle (1)Year (Issue Date)
    2014 (1)
    Item AvailabilityMetadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    On the low SNR capacity of MIMO fading channels with imperfect channel state information

    Benkhelifa, Fatma; Tall, Abdoulaye; Rezki, Zouheir; Alouini, Mohamed-Slim (IEEE Transactions on Communications, Institute of Electrical and Electronics Engineers (IEEE), 2014-06) [Article]
    The capacity of multiple-input multiple-output (MIMO) Rayleigh fading channels with full knowledge of channel state information (CSI) at both the transmitter and the receiver (CSI-TR) has been shown recently to scale at low signal-to-noise ratio (SNR) essentially as SNR log(1/SNR), independently of the number of transmit and receive antennas. In this paper, we investigate the ergodic capacity of MIMO Rayleigh fading channel with estimated channel state information at the transmitter (CSI-T) and possibly imperfect channel state information at the receiver (CSI-R). Our framework can be seen as a generalization of previous works as it can capture the perfect CSI-TR as a special case when the estimation error variance goes to zero. In this paper, we mainly focus on the low SNR regime, and we show that the capacity scales as (1-α) SNR log(1/SNR), where α is the estimation error variance. This characterization shows the loss of performance due to error estimation over the perfect channel state information at both the transmitter and the receiver. As a by-product of our new analysis, we show that our framework can be also extended to characterize the capacity of MIMO Rician fading channels at low SNR with possibly imperfect CSI-T and CSI-R. © 1972-2012 IEEE.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.