• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorNg, Tien Khee (2)
    Ooi, Boon S. (2)
    Alatawi, Abdullah (1)Chi, Nan (1)Holguin Lerma, Jorge Alberto (1)View MoreDepartmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (2)Electrical Engineering (2)Electrical Engineering Program (2)Journal
    IEEE Journal of Selected Topics in Quantum Electronics (2)
    KAUST Grant Number
    BAS/1/1614-01-01 (2)
    GEN/1/6607-01-01 (2)
    KCR/1/2081-01-01 (2)
    REP/1/2878-01-01 (1)Publisher
    Institute of Electrical and Electronics Engineers (IEEE) (2)
    SubjectAmplitude modulation (1)External cavity diode laser (1)Gallium nitride (1)Laser diodes (1)self-injection locking (1)View MoreTypeArticle (2)Year (Issue Date)2019 (2)Item Availability
    Open Access (2)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Single and Multiple Longitudinal Wavelength Generation in Green Diode Laser

    Shamim, Md Hosne Mobarok; Ng, Tien Khee; Ooi, Boon S.; Khan, Mohammed Zahed Mustafa (IEEE Journal of Selected Topics in Quantum Electronics, Institute of Electrical and Electronics Engineers (IEEE), 2019) [Article]
    Single and multiple wavelength laser systems are presented that employ self-injection locked InGaN/GaN green laser diodes in an external cavity configuration with a partially reflective mirror. A stable and simultaneous locking of up to four longitudinal Fabry–Perot modes of the system cavity is demonstrated with appreciable signal-to-noise-ratio of ∼13 dB and average mode linewidth of ∼150 pm. The multi-wavelength spectrum exhibited a flat-top emission with nearly equal power distribution among the modes and an analogous mode spacing of ∼0.5 nm. This first demonstration of multi-wavelength generation source is highly attractive in a multitude of cross-disciplinary field applications besides asserting the prospects of narrow wavelength spaced multiplexed visible light communication. Moreover, an extended two-stage self-injection locked near single wavelength visible laser system is also presented. An ultra-narrow linewidth of ∼34 pm is realized at 525.05 nm locked wavelength from this innovative system, with ∼20 dB side-mode-suppression-ratio; thus signifying a paradigm shift toward semiconductor lasers for near single lasing wavelength generation, which is presently dominated by other kinds of laser technologies.
    Thumbnail

    Group-III-nitride superluminescent diodes for solid-state lighting and high-speed visible light communications

    Shen, Chao; Holguin Lerma, Jorge Alberto; Alatawi, Abdullah; Zou, Peng; Chi, Nan; Ng, Tien Khee; Ooi, Boon S. (IEEE Journal of Selected Topics in Quantum Electronics, Institute of Electrical and Electronics Engineers (IEEE), 2019) [Article]
    Group-III-nitride superluminescent diodes (SLDs) are emerging as light sources for white lighting and visible light communications (VLC) owing to their droop-free, low speckle noise and large modulation bandwidth properties. In this study, we discuss the development of GaN-based visible SLDs, and analyze their electro-optical properties by studying the optical power-bandwidth products (PBPs) and injection current densities. The significant progress in blue SLDs and their applications for white light VLC is highlighted. A blue SLD, with an optical power of > 100 mW and large PBP of 536 mW.nm, is utilized to generate white light, resulting in a high CRI of 88.2. In a modulation experiment designed for an SLD-based VLC system, an on-off keying scheme exhibits a 1.2 Gbps data rate, with a bit error rate (BER) of 1.8 × 10-3, which satisfies the forward error correction (FEC) criteria. A high data rate of 3.4 Gbps is achieved using the same SLD transmitter, by applying the 16-QAM discrete multi-tone (DMT) modulation scheme for high-speed white light communication. The results reported here unequivocally point to the significant performance and versatility that GaN-based SLDs could offer for beyond-5G implementation, where white lighting and high spectral efficiency VLC systems can be simultaneously implemented.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.