• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorEddaoudi, Mohamed (1)Nanaiah, Karumbaiah Chappanda (1)Patole, Shashikant P. (1)Salama, Khaled N. (1)
    Shekhah, Osama (1)
    View MoreDepartment
    Advanced Membranes and Porous Materials Research Center (1)
    Chemical Science Program (1)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (1)
    Electrical Engineering Program (1)
    Functional Materials Design, Discovery and Development (FMD3) (1)
    View MoreJournal
    Sensors and Actuators B: Chemical (1)
    KAUST Grant Number
    FCC/1/1972-05-01 (1)
    Publisher
    Elsevier BV (1)
    Subject
    CNT (1)
    composites (1)humidity (1)Metal-organic frameworks (1)
    sensors (1)
    View MoreTypeArticle (1)Year (Issue Date)2017 (1)Item AvailabilityOpen Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    The quest for highly sensitive QCM humidity sensors: the coating of CNT/MOF composite sensing films as case study

    Nanaiah, Karumbaiah Chappanda; Shekhah, Osama; Yassine, Omar; Patole, Shashikant P.; Eddaoudi, Mohamed; Salama, Khaled N. (Sensors and Actuators B: Chemical, Elsevier BV, 2017-11-01) [Article]
    The application of metal-organic frameworks (MOFs) as a sensing layer has been attracting great interest over the last decade, due to their uniform properties in terms of high porosity and tunability, which provides a large surface area and/or centers for trapping/binding a targeted analyte. Here we report the fabrication of a highly sensitive humidity sensor that is based on composite thin films of HKUST-1 MOF and carbon nanotubes (CNT). The composite sensing films were fabricated by spin coating technique on a quartz-crystal microbalance (QCM) and a comparison of their shift in resonance frequencies to adsorbed water vapor (5 to 75% relative humidity) is presented. Through optimization of the CNT and HKUST-1 composition, we could demonstrate a 230% increase in sensitivity compared to plain HKUST-1 film. The optimized CNT-HKUST-1 composite thin films are stable, reliable, and have an average sensitivity of about 2.5×10−5 (Δf/f) per percent of relative humidity, which is up to ten times better than previously reported QCM-based humidity sensors. The approach presented here is facile and paves a promising path towards enhancing the sensitivity of MOF-based sensors.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.