• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Ng, Tien Khee (3)
    Ooi, Boon S. (3)
    Shen, Chao (3)
    Alyamani, Ahmed Y. (2)Alatawi, Abdullah (1)View MoreDepartmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (3)
    Electrical Engineering Program (3)
    Photonics Laboratory (3)
    Communication Theory Lab (1)Journal
    Optics Express (3)
    KAUST Grant Number
    BAS/1/1614-01-01 (3)
    GEN/1/6607-01-01 (3)
    KCR/1/2081-01-01 (3)
    REP/1/2878-01-01 (3)PublisherThe Optical Society (3)TypeArticle (3)Year (Issue Date)
    2018 (3)
    Item Availability
    Open Access (3)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication

    Alatawi, Abdullah; Holguin Lerma, Jorge Alberto; Kang, Chun Hong; Shen, Chao; Subedi, Ram Chandra; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S. (Optics Express, The Optical Society, 2018-09-25) [Article]
    We demonstrated a high-power (474 mW) blue superluminescent diode (SLD) on c-plane GaN-substrate for speckle-free solid-state lighting (SSL), and high-speed visible light communication (VLC) link. The device, emitting at 442 nm, showed a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. By integrating a YAG-phosphor-plate to the SLD, a CRI of 85.1 and CCT of 3392 K were measured, thus suitable for solid-state lighting. The SLD shows a relatively large 3-dB modulation bandwidth of >400 MHz, while a record high data rate of 1.45 Gigabit-per-second (Gbps) link has been achieved below forward-error correction (FEC) limit under non-return-to-zero on-off keying (NRZ-OOK) modulation scheme. Our results suggest that SLD is a promising alternative for simultaneous speckle-free white lighting and Gbps data communication dual functionalities.
    Thumbnail

    Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications

    Shen, Chao; Ng, Tien Khee; Lee, Changmin; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S. (Optics Express, The Optical Society, 2018-02-14) [Article]
    GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, VSOA, of 0V and 6.25V, respectively. The amplification effect was measured based on a large gain of 5.7 dB at VSOA = 6.25V from the increased optical output power of 8.2 mW to 30.5 mW. Such integrated amplifier can be modulated to achieve Gbps data communication using on-off keying technique. The monolithically integrated amplifier-LD paves the way towards the III-nitride on-chip photonic system, providing a compact, low-cost, and multi-functional solution for applications such as smart lighting and visible light communications.
    Thumbnail

    375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    Sun, Xiaobin; Cai, Wenqi; Alkhazragi, Omar; Ooi, Ee-Ning; He, Hongsen; Chaaban, Anas; Shen, Chao; Oubei, Hassan M.; Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S. (Optics Express, The Optical Society, 2018-05-04) [Article]
    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.