## Search

Now showing items 1-4 of 4

JavaScript is disabled for your browser. Some features of this site may not work without it.

Author

Bagci, Hakan (4)

Ulku, Huseyin Arda (3)Al-Harthi, Noha A. (2)Haji Ali, Abdul Lateef (2)Keyes, David E. (2)View MoreDepartment
Applied Mathematics and Computational Science Program (4)

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (4)
Electrical Engineering Program (4)

Computer, Electrical and Mathematical Sciences & Engineering (CEMSE) (3)Computer Science Program (2)View MorePublisherarXiv (1)SubjectCEM (1)View MoreTypePoster (3)Preprint (1)Year (Issue Date)2018 (1)2016 (1)2015 (1)2014 (1)Item Availability
Open Access (4)

Now showing items 1-4 of 4

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Submit Date Asc
- Submit Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

Computation of Electromagnetic Fields Scattered From Dielectric Objects of Uncertain Shapes Using MLMC

Litvinenko, Alexander; Haji Ali, Abdul Lateef; Uysal, Ismail Enes; Ulku, Huseyin Arda; Oppelstrup, Jesper; Tempone, Raul; Bagci, Hakan (2016-01-06) [Poster]

Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large. This significantly increases the total execution time.
In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by balancing the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

Nyström-discretized Magnetic Field Integral Equation for 2D Electromagnetic Scattering

Al-Harthi, Noha A.; Ulku, Huseyin Arda; Yokota, Rio; Keyes, David E.; Bagci, Hakan (2014-05-04) [Poster]

Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering

AbdulJabbar, Mustafa Abdulmajeed; Al Farhan, Mohammed; Al-Harthi, Noha A.; Chen, Rui; Yokota, Rio; Bagci, Hakan; Keyes, David E. (arXiv, 2018-03-27) [Preprint]

Algorithmic and architecture-oriented optimizations are essential for achieving performance worthy of anticipated energy-austere exascale systems. In this paper, we present an extreme scale FMM-accelerated boundary integral equation solver for wave scattering, which uses FMM as a matrix-vector multiplication inside the GMRES iterative method. Our FMM Helmholtz kernels treat nontrivial singular and near-field integration points. We implement highly optimized kernels for both shared and distributed memory, targeting emerging Intel extreme performance HPC architectures. We extract the potential thread- and data-level parallelism of the key Helmholtz kernels of FMM. Our application code is well optimized to exploit the AVX-512 SIMD units of Intel Skylake and Knights Landing architectures. We provide different performance models for tuning the task-based tree traversal implementation of FMM, and develop optimal architecture-specific and algorithm aware partitioning, load balancing, and communication reducing mechanisms to scale up to 6,144 compute nodes of a Cray XC40 with 196,608 hardware cores. With shared memory optimizations, we achieve roughly 77% of peak single precision floating point performance of a 56-core Skylake processor, and on average 60% of peak single precision floating point performance of a 72-core KNL. These numbers represent nearly 5.4x and 10x speedup on Skylake and KNL, respectively, compared to the baseline scalar code. With distributed memory optimizations, on the other hand, we report near-optimal efficiency in the weak scalability study with respect to both the logarithmic communication complexity as well as the theoretical scaling complexity of FMM. In addition, we exhibit up to 85% efficiency in strong scaling. We compute in excess of 2 billion DoF on the full-scale of the Cray XC40 supercomputer.

Litvinenko, Alexander; Haji Ali, Abdul Lateef; Uysal, Ismail Enes; Ulku, Huseyin Arda; Tempone, Raul; Bagci, Hakan; Oppelstrup, Jesper (2015-01-07) [Poster]

Simulators capable of computing scattered fields from objects of uncertain shapes are highly useful in electromagnetics and photonics, where device designs are typically subject to fabrication tolerances. Knowledge of statistical variations in scattered fields is useful in ensuring error-free functioning of devices. Oftentimes such simulators use a Monte Carlo (MC) scheme to sample the random domain, where the variables parameterize the uncertainties in the geometry. At each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver is executed to compute the scattered fields. However, to obtain accurate statistics of the scattered fields, the number of MC samples has to be large.
This significantly increases the total execution time. In this work, to address this challenge, the Multilevel MC (MLMC [1]) scheme is used together with a (deterministic) surface integral equation solver. The MLMC achieves a higher efficiency by “balancing” the statistical errors due to sampling of the random domain and the numerical errors due to discretization of the geometry at each of these samples. Error balancing results in a smaller number of samples requiring coarser discretizations. Consequently, total execution time is significantly shortened.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.