• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Janjua, Bilal (3)
    Ng, Tien Khee (3)Ooi, Boon S. (3)
    Zhao, Chao (3)
    Alhamoud, Abdullah (2)View MoreDepartment
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (3)
    Electrical Engineering Program (3)
    Photonics Laboratory (3)Electron Microscopy (2)Imaging and Characterization Core Lab (2)JournalIEEE Photonics Journal (1)Nanoscale (1)Nanoscale Research Letters (1)KAUST Grant Number
    BAS/1/1614-01-01 (3)
    C/M-20000-12-001-77 (1)PublisherInstitute of Electrical and Electronics Engineers (IEEE) (1)Royal Society of Chemistry (RSC) (1)Springer Nature (1)SubjectAmorphous quartz (1)Gallium nitride (1)Light-emitting diodes (1)Light-emitting diodes (LEDs) (1)Nanowires (1)View MoreType
    Article (3)
    Year (Issue Date)
    2018 (3)
    Item Availability
    Open Access (3)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Quantified Hole Concentration in AlGaN Nanowires for High-Performance Ultraviolet Emitters

    Zhao, Chao; Ebaid, Mohamed; Zhang, Huafan; Priante, Davide; Janjua, Bilal; Zhang, Daliang; Wei, Nini; Alhamoud, Abdullah; Shakfa, M. Khaled; Ng, Tien Khee; Ooi, Boon S. (Nanoscale, Royal Society of Chemistry (RSC), 2018) [Article]
    P-type doping in wide bandgap and new classes of ultra-wide bandgap materials has long been a scientific and engineering problem. The challenges arise from the large activation energy of dopants and high densities of dislocations in materials. We report here, a significantly enhanced p-type conduction using high-quality AlGaN nanowires. For the first time, the hole concentration in Mg-doped AlGaN nanowires is quantified. The incorporation of Mg into AlGaN was verified by correlation with photoluminescence and Raman measurements. The open-circuit potential measurements further confirmed the p-type conductivity; while Mott-Schottky experiments measured a hole concentration of 1.3×1019 cm-3. These results from photoelectrochemical measurements allow us to design prototype ultraviolet (UV) light-emitting diodes (LEDs) incorporating the AlGaN quantum-disks-in-nanowire and optimized p-type AlGaN contact layer for UV-transparency. The ~335-nm LEDs exhibited a low turn-on voltage of 5 V with a series resistance of 32 Ω, due to the efficient p-type doping of the AlGaN nanowires. The bias-dependent Raman measurements further revealed the negligible self-heating of devices. This study provides an attractive solution to evaluate electrical properties of AlGaN, which is applicable to other wide bandgap nanostructures. Our results are expected to open doors to new applications for wide and ultra-wide bandgap materials.
    Thumbnail

    Ultraviolet-A LED Based on Quantum-disks-in-AlGaN-nanowires - Optimization and Device Reliability

    Janjua, Bilal; Priante, Davide; Prabaswara, Aditya; Alanazi, Lafi M.; Zhao, Chao; Alhamoud, Abdullah; Alias, Mohd Sharizal; Rahman, Abdul; Alyamani, Ahmed; Ng, Tien Khee; Ooi, Boon S. (IEEE Photonics Journal, Institute of Electrical and Electronics Engineers (IEEE), 2018-03-16) [Article]
    Group-III nitride-based ultraviolet (UV) quantum-disks (Qdisks) nanowires (NWs) light-emitting diodes grown on silicon substrates offer a scalable, environment-friendly, compact, and low-cost solution for numerous applications such as solid-state lighting, spectroscopy, and biomedical. However, the internal quantum efficiency, injection efficiency, and extraction efficiency need to be further improved. The focus of this paper encompasses investigations based on structural optimization, device simulation, and device reliability. To optimize a UV-A (320-400 nm) device structure we utilize the self-assembled quantum-disk-NWs with varying quantum-disks thickness to study carrier separation in active-region and implement an improved p-contact-layer to increase output power. By simulation, we found a 100° improvement in the direct recombination rate for samples with thicker Qdisks thickness of 1.2 nm compared to the sample with 0.6 nm-thick Qdisks. Moreover, the sample with graded top Mg-doped AlGaN layer in conjunction with thin Mg-doped GaN layer shows 10° improvement in the output power compared to the samples with thicker top Mg-doped GaN absorbing contact layer. A fitting with ABC model revealed the increase in non-radiative recombination centers in the active region after a soft stress-test. This work aims to shed light on the research efforts required for furthering the UV NWs LED research for practical applications.
    Thumbnail

    Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S. (Nanoscale Research Letters, Springer Nature, 2018-02-06) [Article]
    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.