• Login
    Search 
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
    • Electrical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Alamoudi, Kholod (1)
    Almislem, Amani Saleh Saad (1)Bahabry, Rabab R. (1)Diallo, Elhadj (1)Diaz, Marlon (1)View MoreDepartmentAdvanced Membranes and Porous Materials Research Center (1)Bioscience Program (1)Chemical Science Program (1)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (1)
    Electrical Engineering Program (1)
    View MoreJournalnpj Flexible Electronics (1)KAUST Grant NumberOSR-2015-Sensors-2707 (1)OSR-2016-KKI-2880 (1)PublisherSpringer Nature (1)Type
    Article (1)
    Year (Issue Date)
    2017 (1)
    Item Availability
    Open Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system

    Kutbee, Arwa T.; Bahabry, Rabab R.; Alamoudi, Kholod; Ghoneim, Mohamed T.; Diaz, Marlon; Almislem, Amani Saleh Saad; Gumus, Abdurrahman; Diallo, Elhadj; Nassar, Joanna M.; Hussain, Aftab M.; Khashab, Niveen M.; Hussain, Muhammad Mustafa (npj Flexible Electronics, Springer Nature, 2017-10-25) [Article]
    To augment the quality of our life, fully compliant personalized advanced health-care electronic system is pivotal. One of the major requirements to implement such systems is a physically flexible high-performance biocompatible energy storage (battery). However, the status-quo options do not match all of these attributes simultaneously and we also lack in an effective integration strategy to integrate them in complex architecture such as orthodontic domain in human body. Here we show, a physically complaint lithium-ion micro-battery (236 μg) with an unprecedented volumetric energy (the ratio of energy to device geometrical size) of 200 mWh/cm3 after 120 cycles of continuous operation. Our results of 90% viability test confirmed the battery’s biocompatibility. We also show seamless integration of the developed battery in an optoelectronic system embedded in a three-dimensional printed smart dental brace. We foresee the resultant orthodontic system as a personalized advanced health-care application, which could serve in faster bone regeneration and enhanced enamel health-care protection and subsequently reducing the overall health-care cost.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.