• Login
    Search 
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorGhaffour, NorEddine (1)Lee, Jung Gil (1)DepartmentBiological and Environmental Sciences and Engineering (BESE) Division (1)Environmental Science and Engineering Program (1)Water Desalination and Reuse Research Center (WDRC) (1)Journal
    Desalination (1)
    KAUST Acknowledged Support UnitWater Desalination and Reuse Center (WDRC) (1)PublisherElsevier BV (1)Subject
    FO simulation (1)
    Influence of temperatures (1)Length-averaged lumped model (1)Spatial variation (1)Water and salt permeabilities (1)View MoreTypeArticle (1)Year (Issue Date)2019 (1)Item Availability
    Embargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Predicting the performance of large-scale forward osmosis module using spatial variation model: Effect of operating parameters including temperature

    Lee, Jung Gil; Ghaffour, NorEddine (Desalination, Elsevier BV, 2019-08-12) [Article]
    Forward osmosis (FO) is considered as an energy-efficient process for numerous applications. Although its performance is determined by the spatially varied operation factors and the length of the channel, most of the reported simulation studies rely on length-averaged lumped models. Here, we introduce a one-D model based on heat and mass transfer and transport behavior for both bulk draw and feed channel flows. We find prediction results to be in good agreement with two different experimental results at inlet feed temperatures below 25 °C. However, the difference of water flux (Jw) and reverse salt flux (RSF) between measured and predicted data increases when both feed and draw temperatures also increase. Our theoretical simulation study first reveals that the feed temperature near the membrane active layer surface is the main factor for improving water and salt permeabilities. We find that, with a channel width of 0.3 m and a channel length of 2.5 m, Jw and RSF calculated using the length-averaged based lumped model are overestimated by 13.01% and 13.12%, respectively, compared to those obtained using our new spatial variation model. Our study demonstrates that the length-averaged based lumped model is not an appropriate simulation model to predict the performance of large-scale FO modules at lower inlet velocities.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.